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ABSTRACT 

Computational simulation of the vertical tail buf- 
fet problem is accomplished using a delta wing- 
vertical tail configuration. Flow conditions are se- 
lected such that the wing primary-vortex cores expe- 
rience vortex breakdown and the resulting flow in- 
teracts with the vertical tail. This multidisciplinary 
problem is solved successively using three sets of 
equations for the fluid flow, aeroelastic deflections 
and grid displacements. For the fluid dynamics part, 
the unsteady, compressible, full Navier-Stokes equa- 
tions are solved accurately in time using an im- 
plicit, upwind, flux-difference splitting, finite-volume 
scheme. For the aeroelastic part, the aeroelastic equa- 
tion for bending vibrations is solved accurately in 
time using the Galerkin method and the four-stage 
Runge-Kutta scheme. The grid for the fluid dynamics 
computations is updated every few time steps using 
a third set of interpolation equations. The computa- 
tional application includes a delta wing of aspect ra- 
tio 1 and a rectangular vertical tail of aspect ratio 2, 
which is placed at 0.5 root-chord length downstream 
of the wing trailing edge. The wing angle of attack is 
35" and the flow Mach number and Reynolds number 
are 0.4 and 10,000; respectively. 

INTRODUCTION 

Recently, the design of modern fighter aircraft has 
been focused on the high angle of attack maneuver- 
ability at high loading conditions, and the interest in 
the tail buffet problem is again renewed. For these 
fighters, the ability to fly and maneuver at high angles 
of attack is of prime importance. This capability is 
achieved, for example in the F/A-18 fighter, through 
the combination of the leading-edge extension (LEX) 
of the delta wing and the use of vertical tails. The 
LEX maintains lift at high angles of attack by gener- 
ating a pair of vortices that trail aft over the top of the 
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aircraft. The vortex entrains air over the vertical tails 
to maintain stability of the aircraft. This combination 
of LEX and vertical tails leads to the aircraft excel- 
lent high angle of attack performance. However, at 
some flight conditions, the vortices emananting from 
the highly-swept LEX of the delta wing breakdown 
before reaching the vertical tails which get bathed 
in a wake of highly-turbulent, swirling flow. The 
vortex-breakdown flow produces severe buffet on the 
vertical tails and has led to their premature fatigue 
failure. Buffeting of the vertical tails of the F/A-18 
fits into this category. During flight operations of 
this airplane large vibrations of the vertical tails have 
been observed. 

Sellers et al.' conducted some three-component 
velocity surveys for a YF-17 model (a configura- 
tion similar to the F-18) at low speeds. Their re- 
sults clearly show that at 25" angle of attack the 
vortex produced by the LEX experiences breakdown 
and that there are large fluctuations in the velocity in 
the vicinity of the vertical tails. They measured rms 
fluctuations as high as 40% of the freestream stream 
velocity. Erickson, et a1.2 presented a wind tunnel 
investigation of the F/A-18 aircraft. The investiga- 
tion focused mainly on the measurements of steady 
forces and pressures on the LEX and laser light sheet 
measurements of the vortex structure. Some water 
tunnel studies conducted by wentz3 using an F-18 
model also showed that the vortex produced by the 
LEX of the wing breaks down ahead of the vertical 
tails at angles of attack of 25" and higher. If these 
flows contain substantial energy at frequencies corre- 
sponding to the lower modes of vibration of the tail 
structure, significant structural response can result. 

Another wind tunnel investigation of buffeting is 
published by Lee and ~ r o w n ~ .  The buffeting on the 
vertical fin of a rigid 6% model of the F/A-18 has 
been investigated. Unsteady pressure measurements 
on the vertical fin were conducted and the vortex flow 
structure behind the fin was studied. The study was 
carried out with LEX fences on and off to conclude 
that the LEX fence has a small influence on the 
steady balance measurements such as lift and pitching 
moment. 



Rao, Puram and shahS proposed two aerodynamic 
concepts for alleviating high-alpha tail buffet charac- 
teristics of LEX vortex dominated twin tail fightcr 
configurations. These concepts were explored in low 
specd tunnel tests on generic models via flow visu- 
dilations, 6-component balance measurements and 
monitoring of tail dynamics. Passive dorsal-fin exten- 
sions of  the vertical tails, and an active LEX arrange- 
ment with up-deflected edge sections were evaluated 
as independent means of re-structuring the adverse 
vortical flow environment in the tail region. Each 
of these techniques successfully reduced the buffet. 
Used in combination, the two concepts indicated sig- 
nificant tail buffet relief with relatively minor impact 
on the high u configuration aerodynamics. 

Cole, Moss and ~ o g g e t t ~  tested a rigid, 116 size, 
full-span model of an F-18 airplanc that was fit- 
tcd with flexible vertical tails of two different stiff- 
ncss. Vertical-tail buffct rcsponse results were ob- 
taincd over the range of angles of attack from -10" 
to +40°, and over the range of Mach numbers from 
0.3 to 0.95. Their results indicated that the buffct 
response occurs in the first bcnding rnodc, increases 
with increasing dynamic pressure and is larger at M 
= 0.3 than that at a higher Mach number. 

So far, there are no available theoretical or com- 
putational nlcthods to predict and control the aeroe- 
lastic buffet characteristics of vertical tails. The cru- 
cial point in predicting the buffet characteristics is 
thc knowledge of the driving unsteady airloads asso- 
ciated with flow scparations and vortex breakdown. 
~dwards '  prcscnted a good assessment of the cornpu- 
tational cost of this problem for a full fighter aircraft. 
The principal author of this paper has proposed two 
simple models to simulate and study the vertical-tail 
buffet problcm at a substantially reduccd computa- 
tional cost in comparison with the cost of solving 
for the flow around a full fighter aircraft. The basic 
concept behind thcse models is to be able to gener- 
ate an unsteady, vortex-breakdown flow and to place 
a vcrtical tail, which is cantilevered, in thc down- 
stream of the vortex-brcakdown flow. In this way, 
the buffet problem 1s isolated from thc wholc config- 
uration and the computational resources are focused 
on a small region for high resolution. The first pro- 
posed model consists of a configured duct in which 
the inlct swirling flow is forced to breakdown either 
through a shock waveX (for transonic and supcrsonic 
inlet flows) or through a gradual adverse pressure gra- 
dicnt that is generated by thc duct wall (for subsonic 

inlet swirling flows). Downstream of the breakdown 
flow, a vcrtical cantilevered tail is placed. In the sec- 
ond model, the configuration consists of a delta wing 
at a critical angle of attack which produces break- 
down of the leading-edge vortex cores9. Downstream 
of the breakdown flow, a vcrtical single or twin-tail 
configuration which is fixed as a cantilever is placed. 

In the prcsent paper, the second model is con- 
sidered for the computational simulation. The model 
consists of a delta wing of aspect ratio 1 and a sin- 
gle, rectangular, vertical tail of aspect ratio 2. The 
tail is placed at 0.5 root-chord length downstream of 
the wing trailing edge. The tail is cantilevered at the 
lower side and the configuration is pitched at 35" an- 
gle of attack. The flow Mach number and Reynolds 
number are 0.4 and 10,000, respectively. The prob- 
lem is solved sequentially using the time-accurate 
integration of the laminar, unsteady, compressible 
Navier-Stokes equations, the aeroelastic equation for 
a bcam in a bending modc and a set of equations to 
update the grid-points locations. 

FORMULATION 

The formulation of the problem consists of three 
sets of governing equations along with certain ini- 
tial and boundary conditions. The first set is the 
laminar, unsteady, compressible, full Navier-Stokes 
equations. The second set consists of the aeroelas- 
tic equations for the vibration modes which could be 
coupled bending and torsion modes. In the present 
paper, only the bending vibration is considered with- 
out structural damping or nonlincarities, which could 
be addcd in the future wirhout any difficulty. The 
third set consists of equations for calculating the grid 
displacements due to the tail deflections. The liter- 
ature shows various nlcthods to move the grid. The 
simplest methods use simple interpolation functions 
such that the grid points adjacent to the acroclastic 
surface move with the surface while the grid points at 
the computational-region boundary do not 
In the more advanced methods for moving the grid, 
Ihe grid is simulated a a s t a t i ~ ' ~ - ~ ~  or dynamic truss. 
The unsteady, linearized, Navier-displacement equa- 
tions have also becn used successfully by Kandil ct 
al. to move the grid dynamically'5~'h. In the present 
paper, we use simple grid interpolation to move the 
grid. Next, the governing equations for each set are 
given: 



Fluid Flow: 

The conservative form of the dimensionless, 
unsteady, compressible, full NS equations in 
terms of time-dependent, body-conformed coordi- 
nates t l ,  t2 and ez is given by 

Ern z inviscid flux 

- viscous and heat-conduction flux i n  t" 
direction 

1 

The first element of the three momentum elements of 
Eq. (5) is given by 

The second and third elements of the momentum 
elements are obtained by replacing the subscript 1, 
everywhere in Eq. (7), with 2 and 3, respectively. 
The last element of Eq. (5) is given by 

The reference parameters for the dimensionless form 
of the equations are c*, a,, c*/a,, p, and p, for 
the length, velocity, time, density and molecular vis- 
cosity, respectively. The Reynolds number is defined 
as Re = p,V,c*/p,, where c* is root-chord length 
of the wing. The pressure, p, is related to the total 
energy per unit mass and density by the gas equation 

The viscosity is calculated from the Sutherland law 

and the Prandtl number P, = 0.72. In Eqs. (1)-(8), 
the indicia1 notation is used for convenience. 

Aeroelastic Deflections: 

In the present paper, the vertical rectangular tail 
is treated as a homogeneous, uniform, cantilevered 
beam with rectangular section. For bending vibration, 
the dimensionless equation for the deflection w ( z ,  t )  
is given by 

8% a2w 
EI- + m- = N ( z , t )  

a z 4  at';! (11) 

where z is the vertical distance from the fixed sup- 
port along the beam length, I t ,  E the modulus of 
elasticity, I the area moment of inertia, m the mass 
per unit length and N is the net surface pressure 
force per unit length. The dimensionless form of 
w ,  z ,  E, I ,  m and N are given by 

where c* is the wing root-chord length, p k  the 
freestream air density, a,  the freestream speed of 
sound, d* the tail thickness, b* the tail chord length 
and the "*" denotes dimensional quantities. The ge- 
ometrical and natural boundary conditions are given 

by 

The solution to Eq. (11) is given by 



where qhj(z) are comparison functions which satisfy 
the boundary conditions, and they are given by the 
natural modes of vibration 

and /3j are the eigenvalues obtained from the solution 
of cos @lt cosh Dlt = - 1. Substituting Eq. (14) into 
Eq. (11) and using the Galerkin method, the follow- 
ing equation is obtained for the generalized coordi- 
nates q j ( t ) :  

j=l j=1 

where 

mrj elements o f  mass matr ix  

kr j  E elements o f  s t i f f n e s s  matrix 

N ,  = generalized force = l1 iVdrdz (l7.c) 

Since m, I and E are constants and 4, are orthogo- 
nal, the mass and stiffness matrices are diagonal and 
the set given by Eq. (16) is decoupled. Hence, the 
solution to the present simple case reduces to the so- 
lution of a decoupled set of second-order, ordinary- 
differential equations, where each equation corre- 
sponds to one of the natural modes. The solution 
is obtained either by a closed-form convolution inte- 
gral or by a four-stage Runge-Kutta scheme. For the 
jth mode shape, Eq. (16) becomes 

krr ,jj + -qj = - N r ( t )  ( n o  summation over r )  
m r r  m r r  

(17) 
The convolution integral solution for this equation is 
given by 

where w: = = a, m q j (0 )  is the initial displace- 
ment and ~ ~ ( 0 )  is the initial velocity. 

If m, I and E are functions of z ,  then Eq. (16) 
will be a coupled set and one needs to use a normal- 
mode shape transformation from q( t )  to ~ ( t )  to de- 
couple the resulting set. For a coupled bending and 
torsion vibration, the present procedure can be gen- 
eralized to obtain the solution. For the aeroelastic 
equations in the latter case, the solution is obtained 
using the four-stage Runge-Kutta scheme. 

Grid Displacements: 

In the present paper, we use simple interpolation 
functions to displace the grid due to the tail deflection. 
For bending vibrations, the tail deflection at any point 
on its surface, wij%h,  is in the spanwise direction (y 
coordinate). The spanwise coordinate of a grid point $:: at the time level n + 1 is computed from the 
equation 

where Yis,ldim/4sk is the maximum y coordinate of 
a grid point at the boundary of the computational 
domain with an index of Jd im/4 .  Thus, the tail 
displacement w::; is distributed through a cosine 
function among the y coordinates of the grid. Thus, 
a point on the tail is displaced by the total deflection 
and a point at the boundary is not displaced. 

Boundary and Initial Conditions: 

Boundary conditions consist of conditions for the 
fluid flow and conditions for the aeroelastic deflection 
of the tail. For the fluid flow, the Riemann-invariant 
boundary conditions are enforced at the inflow and 
outflow boundaries of the computational domain. At 
the plane of geometric symmetry, a periodic boundary 
condition is specified with the exception of grid points 
on the tail. On the wing surfaces, the no-slip and 
no-penetration conditions are enforced and 2 = 0. 
On the tail surfaces, the no-slip and no-penetration 
conditions for the relative velocity components are 
enforced (points on the tail surface are moving). The 
normal pressure gradient is no longer equal to zero 
since points on the tail surface are accelerating. This 

A condition becomes $ = -p,at, where at is the 
acceleration of a point on the tail, @ ( z ,  t ) .  For the 
boundary conditions of the aeroelastic deflection of 
the tail, they are given by Eq. (13). 

Initial conditions consist of conditions for the fluid 
flow and conditions for the aeroelastic defleclion of 
the tail. For the fluid flow, the initial conditions 



correspond to the freestream conditions with u 1  = 
u2 = T L . ~  = 0 on the wing and tail. For the aeroelastic 
deflection of the tail, the initial conditions for any 
point on the tail is that the displacement and velocity 

371 are zeros, w ( z , n )  = = ( z , o )  = O 

METHOD O F  SOLUTION 

The first step is to solve for the fluid-flow prob- 
lem using the vortex-breakdown conditions and keep- 
ing the tail as a rigid beam. Equations (1)-(10) are 
solved time-accurately using the implicit, upwind, 
flux-difference splitting finite-volume scheme. The 

a<"' grid speed ?ii- is set equal to zero in this step. This 
step provides the flow field solution along with the 
pressure difference across the tail. The pressure dif- 
ference is used to generate the force per unit length of 
the tail, K. Next, Eqs. (14) and (18) are used to ob- 
tain the tail deflections, wL,] I;. Equation (19) is used 
to compute the grid coordinates. The metric coeffi- 
cients of the coordinate Jacobian matrix are updated 
as well as the grid speed, g. Next. the compu- 
tational cycle is repeated using Eqs. (])-(lo) for the 
pressure difference across the tail, Eqs. (14) and (18) 
for the tail deflections and Eq. (19) for the grid co- 
ordinates. It should be noted that the time step for 
the fluid-flow problem, Atj ,  is an order of magnitude 
less than the time step for the aeroelastic deflection, 
Atd. Moreover, the maximum tail deflection r r -  for 
each Atd is very small. Hence, one does not need 
to compute IL, for each time step Atf  For example, 
if Atd = 10 At f ,  the computation of the aeroelas- 
tic deflections and grid coordinates can be performed 
every 10 Atp 

COMPUTATIONAL APPLICATIONS 

The delta wing-vertical tail configuration consists 
of a sharp-edged, delta wing of aspect ratio 1 and 
a rectangular, vertical tail of aspect ratio 2, which 
is placed in the plane of geometric symmetry. The 
vertical-tail leading edge is located at 0.5 root-chord 
length from the wing trailing edge. The lower edge 
of the tail is along the wing axis and the tail is 
clamped at that edge. The wing angle of attack is 
35" and the freestream Mach number and Reynolds 
number are 0.4 and 10,000, respectively. An 0 - H  
grid of 125x 85x 84 grid points in the wrap-around, 
normal and axial directions, respectively, is used for 
the solution of the fluid-flow part of the problem. 

The solution and analysis of this problem have 
progessed through rigorous steps in order to prove 

the capability of the present model for simulating the 
present multidisciplinary problem: 

Step 1. Fluid Flow Around the Configuration: 

The laminar, unsteady, compressible, full Navier- 
Stokes equations have been integrated time accurately 
using the implicit, upwind, flux-difference splitting, 
finite-volume scheme with At = 0.003. During this 
step, the tail is kept rigid. Figure 1 shows the s p n -  
wise, surface-pressure coefficient (Cp) on the wing at 
different chord stations at i t  = 12,400 (37.2 dimen- 
sionless time). At z = 0.421, the Cp-curve shows 
asymmetry with the pressure on the left side having 
less suction than the pressure on the right side (look- 
ing in the upstream direction). This indicates that 
the left-vortex-core s i x  is enlarging. In Fig. 4, it is 
noticed that at this location a spiral saddle point is 
formed and a spiral vortex-breakdown mode is de- 
veloping downstream of that point. Returning back 
to Fig. 1, it is noticed that the asymmetry exists in 
all the cross-flow planes downstream of x = 0.421. 
At n: = 0.814, a rapid decrease in the suction pres- 
sure on the left side is observed and Fig. 4 shows 
several spiral saddle points at that location. At z = 
0.944, a rapid decrease in the suction pressure on the 
right side is observed and spiral vortex breakdown 
develops in the right vortex core (see Fig. 4). Figure 
2 shows the total-pressure-loss contours and stream- 
lines for the left and right sides at different chord 
stations. The asymmetry is very clear at n: = 0.65 
and 1.0. At n: = 1.0 and on the right side, it is no- 
ticed that a repelling focus (two-dimensional sense 
of topology) exists, which indicates the existence of 
vortex breakdown. 

Figure 3 shows the streamlines in cross-flow 
planes at two chord stations n: = 1.375 and n: = 2.019. 
The vertical-tail leading edge is located at x = 1.5 
and its trailing edge is at n: = 2.0. It is clear that 
the vertical tail is subjected to asymmetric, unsteady, 
surface-pressure loads due to the vortex-breakdown 
flow. Figures 4 and 5 show a plan view of the wing 
and a three-dimensional view of the wing-tail con- 
figuration, respectively, along with the spiral saddle 
points and the asymmetric spiral vortex-breakdown 
modes of the leading-edge vortex cores. 

Figure 6 shows snapshots of the pressure contours 
on the right (.I = 1) and left (.I = J d i ~ n )  surfaces 
of the vertical tail and the pressure-difference on it 
at two time levels; it = 12,400 and it = 12,600. A 
close inspection of these loads reveals that the tail 



is subjected to both bending and torsional loads. In 
the present paper, only the bending vibration is taken 
into consideration (torsional vibrations are also under 
consideration). Figure 7 shows the corresponding 
lumped, aerodynamic force per unit length of the tail, 
N ( z ) ,  at two time levels, t = 37.2 and t = 37.8. 
It is noticed that within this short time of change, 
N ( z )  changes rapidly in magnitude and direction. 
The results at it = 12,600 are used for the initial 
conditions of the buffet problem (i.e. letting the tail 
deflect and interact dynamically with the flow). 

Step 2. Tail Aeroelastic Deflections: 

As it has been pointed out earlier, only bending 
vibrations are considered in the present paper. The 
solution for this part is given by Eqs. (14) and (18). 
This solution is coded in a computer program which 
can also use the four-stage Runge-Kutta scheme to 
obtain the solution, in addition to the closed-form 
convolution integral. The code has been tested for 
an isolated beam which is subjected to a harmonic 
forcing function per unit length of the form N ( z ,  t )  = 
0.12 sin w f t ,  where wf is the forcing frequency. The 
beam is assumed to be homogeneous and uniform 
with rectangular cross section of thickness d = 0.02 
and width b = 0.157. The dimensionless modulus of 
elasticity is E = 0.4903 x 10' and EI = 0.0513. 
The dimensionless mass per unit length is rn = 7.177. 
The dimensionless natural frequencies of this beam 
are 1.85795; 11.64434; 32,60776; . . . etc. Choosing 
the forcing frequency w f l  to be 1.84, the deflection, 
w, is obtained using six natural modes of vibrations, 
4,, T = 1 - 6 and At = 0.02. Figure 8 shows w 
vz t for two points on the beam (mid point and free- 
end point) and it is noticed that the envelope of the 
response reached a maximum value of 0.47 after t = 
160. With zu f z  = 1.858, which coincides with the 
fundamental frequency 1.85795, the envelope of the 
response grows without a bound. Having established 
confidence in the solution of the bending equation, the 
next step is to combine the fluid flow program with 
the aeroelastic program and the grid-displacements 
equation given by Eq. (19). 

Step 3. Fluid Flow and Tail Deflections: 

With the initial-flow conditions obtained in Step 1 
at it = 12,600, the aerodynamic force per unit length 
AT,(z, t )  is provided discretely to the aeroelastic pro- 
gram and the generalized forces N,  are computed 
for six natural mode shapes. The deflections w are 
computed using Eqs. (14) and (18). Next, Eq. (19) 

is used to obtain the updated y-coordinates for the 
grid, the metric coefficients of the Jacobian matrix, 
the grid speed; and the velocity and acceleration of 
the points on the tail for the modified boundary con- 
ditions for the fluid-flow solution. Next, the fluid 
flow part is solved and N,(z , t )  is obtained and the 
computational cycle is repeated. The tail is treated 
as a homogeneous, uniform, rectangular beam with 
rectangular cross section of d = 0.01 and width b 
= 0.5. The dimensionless modulus of elasticity is 
E = 0.4903 x 1 0 b d  EI  = 0.0204 x 10 -% The di- 
mensionless mass per unit length is m = 11.428. Fig- 
ure 9 shows the tail-deflection responses and the aero- 
dynamic forces per unit length versus the vertical co- 
ordinate z every 100 time step (every 0.3 dimension- 
less time). The deflection versus time is also shown 
for the tail midpoint and its free-end point. The de- 
flection curves show that the deflections on the tail are 
positive for the early time steps (up to it = 13,000). 
Beyond it = 13,000, the deflections increase by one 
order of magnitude and become mostly negative with 
positive values on the upper part of the tail. The 
tail deflections are consistent with the aerodynamic 
forces per unit length due to the vortex-breakdown 
flow. It is concluded that vortex-breakdown flow on 
the left surface of the tail produces more suction pres- 
sure than that of the vortex-breakdown flow on the 
right surface of the tail. The deflection-versus-time 
curves show that after if = 13,000 steps (400 steps 
for the buffet calculations), the deflections increase 
very rapidly by an order of magnitude. This indicates 
that the unsteady vortex-breakdown loads might have 
excited one or more of the tail natural frequencies. 
However, it is too early to tell whether the tail is res- 
onating. Solutions for larger time are still underway. 

CONCLUDING REMARKS 

The buffet problem of a vertical tail due to the in- 
teraction of vortex-breakdown flow with the tail has 
been simulated computationally and efficiently using 
a delta wing-vertical tail configuration. The wing as- 
pect ratio and flow conditions have been carefully se- 
lected in order to produce unsteady vortex-breakdown 
flow. The solution has demonstrated the development 
of the tail buffet due to the unsteady loads produced 
by the vortex-breakdown flow. The problem is a 
multidisciplinary problem which requires three sets 
of equations to obtain its solution. The first set is 
the unsteady Navier-Stokes equation which is used 
to obtain the aerodynamics force per unit length on 
the tail. The second set is the aeroelastic equation for 



bending vibrations which is used to obtain the tail de- 
flections, velocities and accelerations. The third set is 
the grid displacement equation which is used to up- 
date the grid coordinates due to the tail deflections. 
The three sets of equations are solved sequentially 
and accurately in time. Since the time step for solv- 
ing the aeroelastic equation is one-order of magnitude 
larger than that of the fluid-flow equation, and since 
the maximum deflection of the tail per time step of the 
fluid-flow solution is very small, computation of the 
tail deflection and updating the grid coordinates can 
be carried out every few time steps of the fluid-flow 
solution. Work is underway to include the torsional 
vibrations and to replace the tail beam assumption 
by a tail plate assumption. Moreover, the grid dis- 
placements will be treated with one of the advanced 
methods. 
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Fig. 2. Total-pressure-loss contours and 
the wing at different chord stations; Ah',, = 1, ART = 2, 
Jrl, = 0.4, n = 3s0, Re = 1OZ1, it = 12, 400. 

X = 1 3 7 5  

Fig. 3. Streamlines on the left and right sides in the wake at different chord 
stations; .-IRE, = 1 ,  ARY1 = 2, ,\I, = 0.4, (1 = 3Z0, Re = lo4, 
l t  = 12.400. 
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Fig. 6. Pressure contours on the right (.J = 1) and left (.J = .JDIAI) surfaces 
of the tail and the pressure difference at two time levels, i t  = 12,400; 
it = 12, GOO. 
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Fig. 7. Lumped force per unit length on the tail at two time levels; 
it = 12, 400; i t  = 12, GOO. 
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Fig. 8. Deflection of two points vz time for an isolated beam due to a force 
per unit length of N ( z ,  t )  = 0.12 sinwrt at two values of forcing 
frequency, w l l  = 1.84, wr2 = l.S5S, E = 0.4903 x loG, E I  = 0.0513, 
I n  = 7.177, l t  = 1, At = 0.02. 
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Fig. 9. Tail deflections and aerodynamic forces per unit length versus tail vertical 
coordinate every 100 time steps (0.3) and deflection of two points on tail 
(at midpoint and free end) versus time; E = 0.4903 x 102, 
E I  = 0.0204 x 10-", ln = 11.428, l1  = 1, At = 0.003. 


