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ABSTRACT 

A delta wing-vertical tail configuration is used to com- 
putationally simulate the vertical-tail buffet problem. The 
configuration consists of a sharp-edged, delta wing of as- 
pect ratio one and a rectangular, vertical plate of aspect 
ratio one, which is placed in the plane of' geometric sym- 
metry behind the wing with the tail lower edge clamped. 
The configuration angle of attack is 35", which results in 
the breakdown of the primary-vortex cores of the delta 
wing. The present multidisciplinary problem is solved 
successively at each time step using three sets of equa- 
tions for the fluid flow, aeroelastic deflections and grid 
displacements. The flowfield is obtained using the un- 
steady, compressible, full Navier-Stokes equations; and 
the aeroelastic deflections of the tail are obtained using 
the coupled aeroelastic equations for bending and tor- 
sional vibrations. The grid displacements are obtained 
using interpolation equations. The results show substan- 
tial effects of torsional deflections of the tail for the cou- 
pled bending-torsion response case in comparison with 
the bending response case. The results also show that 
the deflections and loads of the coupled bending-torsion 
response case are substantially lower than those of the 
uncoupled bending-torsion response case. 

INTRODUCTION 

Very recently, substantial research interest has devel- 
oped in the multidisciplinary engineering problems, par- 
ticularly in the aeronautical applications. The design of 
modem fighter aircraft has been focused on high angle 
of attack maneuverability at high loading conditions, re- 
newing the interest in the tail buffet problem. For these 
fighters, the ability to fly and maneuver at high angles of 
attack is of prime importance. This capability is achieved, 
for example in the F/A-18 fighter, through the combina- 
tion of the leading-edge extension (LEX) and a delta wing 
and the use of vertical tails. The LEX maintains lift at 
high angles of attack by generating a pair of vortices that 
trail aft over the top of the aircraft. The vortex entrains 
air over the vertical tails to maintain stability of the air- 
craft. This combination of LEX and vertical tails leads 
to the aircraft excellent high angle of attack performance. 
However, at some flight conditions, the vortices emanant- 
ing from the highly-swept LEX of the delta wing break- 
down before reaching the vertical tails which get bathed 
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in a wake of highly-turbulent, swirling flow. The vortex- 
breakdown flow produces severe buffet on the vertical 
tails and has led to their premature fatigue failure. 

Experimental investigation of the vertical tail buffet 
of the F/A-18 models have recently been conducted by 
several investigators such as Sellers et al.', Erickson et 
al.', wentz3 and Lee and ~ r o w n ~ .  These experiments 
showed that the vortex produced by the LEX of the wing 
breaks down ahead of the vertical tails at angles of attack 
of 25" and higher and the breakdown flow produced 
unsteady loads on the vertical tails. Rao, Puram and 
Shah"roposed two aerodynamic concepts for alleviating 
high-alpha tail buffet characteristics of the twin tail fighter 
configurations. Cole, Moss and ~ o g g e t t ~  tested a rigid, 
116 size, full-span model of an F-18 airplane that was 
fitted with flexible vertical tails of two different stiffness. 
Vertical-tail buffet response results were obtained over 
the range of angles of attack from -10" to +40°, and 
over the range of Mach numbers from 0.3 to 0.95. Their 
results indicated that the buffet response occurs in the 
first bending mode, increases with increasing dynamic 
pressure and is larger at M = 0.3 than that at a higher 
Mach number. 

An extensive experimental investigation has been con- 
ducted to study vortex-fin interaction on a twin-fin con- 
figuration by Washbum, Jenkins and ~ e r m a n ~ .  The con- 
figuration consisted of a 76" sharp-edged delta wing with 
vertical tails mounted behind the wing. The vertical tails 
were placed at nine locations behind the wing. The ex- 
perimental data showed that the aerodynamic loads are 
more sensitive to the chordwise tail location than its span- 
wise location. As the tails were moved toward the vortex 
core, the buffeting response and excitation were reduced. 
Although the tail location did not affect the vortex core 
trajectories, it affected the location of vortex-core break- 
down. Moreover, the investigation showed that the pres- 
ence of a flexible tail can affect the unsteady pressures 
on the rigid tail on the opposite side of the model. 

Kandil, Kandil and ~ a s s e y '  presented the first suc- 
cessful computational simulation of the vertical tail buf- 
fet using a delta wing-vertical tail configuration. A 76" 
sharp-edged delta wing has been used along with a single 
rectangular vertical tail which was placed aft the wing 
along the plane of geometric symmetry. The flow condi- 
tions and wing angle of attack have been selected to pro- 
duce an unsteady vortex-breakdown flow. The solution of 
this multidisciplinary problem was obtained using three 
sets of equations wavier-Stokes, aeroelastic and grid- 
displacement equations) which were sequentially inte- 



1 grated with time-accurate stepping to obtain the flowfield, 
aerodynamic loads, bending deflections and grid displace- 
ments. Two tail aspect ratios with two chordal locations 
were used. Unsteady vortex breakdown of leading-edge 
vortex cores was captured, and unsteady pressure forces 
were obtained on the tail. Tail shapes and locations were 
found to affect the vortex breakdown locations and aero- 
dynamic loads on the wing and tail. The tail oscillated 
in the first bending-mode shape. These computational 
results are in full qualitative agreement with the experi- 
mental data of Washburn, Jenkins and ~ e r m a n ~ .  An alter- 
native simple model for simulation of the buffet problem 
was used by Kandil and   la nag an' and   la nag an^. In 
this model, a configured circular duct was used to pro- 
duce vortex-breakdown flow through the interaction of 
a supersonic swirling flow and a shock at the inlet of 
the duct. Downstream of the vortex-breakdown flow a 
cantilevered plate was placed. The problem was solved 
for the quasi-axisymmetric case. Currently, this model is 
used to simulate the three-dimensional flow buffet prob- 
lem. 

In the present paper, the delta wing-vertical tail con- 
figuration is used to study the buffet problem, where the 
vertical tail is allowed to oscillate in both bending and tor- 
sional modes. In Ref. 8, by the present authors, only the 
bending-mode oscillation was considered. It was also no- 
ticed in Ref. 8 that torsional aerodynamic loads appeared 
on the tail but their aeroelastic effects were neglected. In 
the present paper, we address the cases of coupled and 
uncoupled bending-torsional responses of the tail. 

FORMULATION 

The formulation of the problem consists of three sets 
of governing equations along with certain initial and 
boundary conditions. The first set is the laminar, un- 
steady, compressible, full Navier-Stokes equations. The 
second set consists of the aeroelastic equations which in- 
clude bending and torsional modes. The third set consists 
of equations for calculating the grid displacements due to 
the tail deflections. The literature shows various methods 
to move the grid. The simplest method uses simple in- 
terpolation functions such that the grid points adjacent to 
the aeroelastic surface move with the surface while the 
grid points at the computational-region boundary do not 
move",". In the more advanced methods for moving the 
grid, the grid is simulated as a ~ t a t i c ' ~ - ' ~  or dynamic truss. 
The unsteady, linearized, Navier-displacement equations 
have also been used successfully by Kandil et al. to move 
the grid dynamically'6~'7. In the present paper, we use 
simple grid interpolation to move the grid. Next, the 
governing equations for each set are given: 

Fluid-Flow Equations: 

The conservative form of the dimensionless, un- 
steady, compressible, full NS equations in terms of time- 
dependent, body-conformed coordinates (', (' and ("is 

given by 

where 
(11' = ('ll(xll 2 3 ,  x3, t )  (2) 

E,,, and ( E , ) ~  are the inviscid flux and viscous and heat- 
conduction flux in (" direction, respectively. Details of 
these fluxes are given in Ref. 8 by the authors. 

Aeroelastic Deflections: 

In the present paper, we consider the dimensionless, 
linearized governing equations for the coupled bending 
and torsional vibrations of a vertical tail that is treated 
as a cantilevered beam. The tail bending and torsional 
deflections occur about an elastic axis that is displaced 
from the inertial axis. These equations for the bending 
deflection, w, and the twist angle, 19, are given by 

where z is the vertical distance from the fixed support 
along the tail length, 11, EI and GJ the bending and tor- 
sional stiffness of the tail section, m the mass per unit 
length, Ie the mass-moment of inertia per unit length 
about the elastic axis, xe the distance between the elas- 
tic axis and inertia axis, N the normal force per unit 
length and M I  the twisting moment per unit length. The 
characteristic parameters for the dimensionless equations, 
Eqs. (4) and ( 9 ,  are c*, a;$, p& and c*/a;$ for the 
length, speed, density and time; where c* is the delta- 
wing root-chord length, a;$ the freestream speed of sound 
and p;$ the freestream air density. The geometrical and 
natural boundary conditions on w and 0 are given by 

ae 
O(0,t) = -(lr , t)  = 0 

d r (7) 

The solution of Eqs. (4) and (5) are given by 
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q z ,  q = x 4 , ( ~ ) 9 j ( t )  (9) 
j = I + 1  

where 4 ,  and 4,  are comparison functions satisfying the 
free-vibration modes of bending and torsion, respectively, 
and q, and q,  are generalized coordinates for bending 
and torsion, respectively. In this paper, the number of 
bending modes, I ,  is six and the number of torsion modes, 
M - I, is also six. Substituting Eqs. (8) and (9) into 
Eqs. (4) and (5) and using the Galerkin method along 
with integration by parts and the boundary conditions, 
Eqs. (6) and (7), we get the following equations for the 
generalized coordinates q; and q j :  

i I, 

qi I d  + , m4r4idz  

i=l 0 
dz-  dz -  

i=l 

Equations (10) and (11) may be written in the matrix 
form 

M21 M?? 

where 

M I  = I t  m4.rnidz 

Similar aeroelastic eauations were developed 
sonic analysis of wi& flutter by ~ t rganac '~ ,  
ganac, Mook and   it chum'^. The solution of Eq. (12), 
for qi; i = 1 , 2  ,..., I, and q,;  j = I +  1 ,..., M ,  is ob- 
tained using the Runge-Kutta scheme. Next, w and B are 
obtained from Eqs. (8) and (9). 

Grid Displacement Equations: 

Once w and 0 are obtained at the n + 1 time step, 
the new grid coordinates are obtained using simple inter- 
polation equations. In these equations, the tail bending 
displacement, will:, and the tail displacement through 
the torsion angle, O1:2, are interpolated through a cosine 
function. These equations for the x and y coordinates to 
the right side of the tail and ahead of its elastic axis are 
given by 

y".k T ( ) (16) + (X - xYj,J sin o::;,'] cos - 

where x;$ and y;$ are the x and y coordinates of a 
grid point at the n + 1 time step, Y is the maximum y 
coordinate from the tail-surface grid point to the corre- 
sponding point at the right boundary of the computational 
domain and S is the maximum x coordinate from the 
tail elastic axis to the forward boundary of the compu- 
tational domain. These equations result in displacing a 
grid point on the tail by the total deflection due to bend- 
ing and torsion and keeping a grid point at the boundary 
fixed. Similar equations are used for the other parts of 
the computational domain. 

Boundary and Initial Conditions: 

Boundary conditions consist of conditions for the 
fluid flow and conditions for the aeroelastic bending and 
torsional deflections of the tail. For the fluid flow, the 
Riemann-invariant boundary conditions are enforced at 
the inflow and outflow boundaries of the computational 
domain. At the plane of geometric symmetry, a periodic 
boundary condition is specified with the exception of grid 
points on the tail. On the wing surfaces, the no-slip and 
no-penetration conditions are enforced and 2 = 0. On 
the tail surfaces, the no-slip and no-penetration conditions 
for the relative velocity components are enforced (points 
on the tail surface are moving). The normal pressure 
gradient is no longer equal to zero since points on the 
tail surface are accelerating. This condition becomes 

= -pat . n, where 5 ,  is the acceleration of a point 
on the tail, which is given by: 

where r is the point distance from the tail elastic axis. For 
the boundary conditions on the aeroelastic deflections of 
the tail, they are given by Eqs. (6) and (7). 

Initial conditions consist of conditions for the fluid 
flow and conditions for the aeroelastic deflections of the 



tail. For the fluid flow, the initial conditions correspond 
to the freestream conditions with ul = u2 = us = 0  
on the wing and tail. For the aeroelastic deflections of 
the tail, the initial conditions for any point on the tail is 
that the displacement and velocity are zeros, w ( z ,  0 )  = 
$ ( z ,  d l  0 )  = 0 ,  O(Z,  0) = Z ( Z ,  i i  I 0) = 0. 

METHOD OF SOLUTION 

The first step is to solve for the fluid-flow problem 
using the vortex-breakdown conditions and keeping the 
tail as a rigid beam. Equations (1)-(3) are solved time- 
accurately using the implicit, upwind, flux-vector splitting 
finite-volume scheme. The grid speed is set equal 
to zero in this step. This step provides the flowfield 
solution along with the pressure difference across the 
tail. The pressure difference is used to generate the 
normal force and twisting moment per unit length of the 
tail. Next, Eqs. (8), (9) and (12) are used to obtain the 
tail deflections, w , , , , ~  and B,,,,.. Equations (16) and (17) 
are used to compute the grid coordinates. The metric 
coefficients of the coordinate Jacobian matrix are updated 
as well as the grid speed, 5. Next, the computational 
cycle is repeated every time step. It should be noted that 
the time step for the fluid-flow problem, At f ,  does not 
have to be the same as the time step for the aeroelastic 
deflection, At,. Moreover, the maximum tail deflections 
w and 8  for each Atd are very small. Hence, one does 
not need to compute w and 8  for each time step At f .  
For example, if Atd = 10 Atf, the computation of 
the aeroelastic deflections and grid coordinates can be 
performed every 10 At f .  

Equation (12) can also be used to compute w and 19 
for the uncoupled case of bending and torsional vibrations 
by setting xo = 0.  Moreover, Eq. (12) can be used to 
compute w for the bending vibrations only by setting 
xo = 0 and the resulting 8  = 0  at each time step. For this 
case, Eqs. (16) and (17) compute the coordinates y::jti 
while keeping the x coordinate stationary. 

COMPUTATIONAL APPLICATIONS 

Delta Wing-Vertical Tail Configuration: 

The delta wing-vertical tail configuration consists of 
a sharp-edged, delta wing of aspect ratio 1 and a rect- 
angular, vertical tail of aspect ratio 1, which is placed 
in the plane of geometric symmetry. The vertical-tail 
leading edge is located at the wing trailing edge. The 
lower edge of the tail is along the wing axis and the tail 
is clamped at that edge. The wing angle of attack is 
35" and the freestream Mach number and Reynolds num- 
ber are 0.4 and 10,000, respectively. An 0 - H  grid of 
125 x 85 x 84 grid points in the wrap-around, normal and 
axial directions, respectively, is used for the solution of 
the fluid-flow part of the problem. 

Initial Conditions (Solution of Fluid-Flow Problem): 

The laminar, unsteady, compressible, full Navier- 
Stokes equations have been integrated time accurately 
using the implicit, upwind, flux-vector splitting, finite- 
volume scheme with At = 0.003. During this step, the 
tail is kept rigid. The results of this step are used as ini- 
tial conditions for the cases of bending response, coupled 
bending-torsion response and uncoupled bending-torsion 
response of the tail. 

Figure 1 shows a top view and a three-dimensional 
view at it = 14,600 for the wing-rigid tail configuration 
along with the critical points of vortex breakdown and 
the stagnation pressure on the wing and tail. This figure 
shows that the vortex breakdown is asymmetric. Fig- 
ure 2 shows the same type of views for the case of a 
rigid tail at it = 16,600. These results show different 
locations of the critical points of vortex-breakdown, dif- 
ferent stagnation-pressure distributions on the wing and 
tail. This conclusively shows that the vortex-breakdown 
flow and the aerodynamic loads on the wing and tail are 
time dependent. Figure 3 shows the spanwise, surface 
pressure coefficient (Cp) on the wing at different chord 
stations at it = 14,600 and 16,600 for the rigid tail. In 
Fig. 3.a at x = 0.448, the Cp curve is asymmetric with the 
left side having less suction than the pressure on the right 
side. This indicates that the left-side vortex core (looking 
in the upstream direction - Fig. 1) is experiencing vor- 
tex breakdown and enlarging at a location ahead of that 
of the right-side vortex core. It is also noticed that the 
Cp-asymmetry exists in all cross-flow planes downstream 
of x = 0.25. At x = 0.95, a rapid decrease in the suction 
pressure is noticed and Fig. 1 shows that the breakdown is 
of the spiral type thereafter. With the exception of the Cp- 
curve at x = 0.25, Fig. 3b shows different C, asymmetry 
and levels than those of Fig. 3.a. Figure 2 shows differ- 
ent locations of the vortex-cores breakdown than those 
of Fig. 1. Again, these results show that the vortex-core 
breakdown and aerodynamic loads for the rigid tail are 
time dependent. 

Bending, Coupled Bending-Torsion and Uncoupled 
Bending-Torsion Tail Responses: 

With the initial-flow conditions obtained at it = 

14,600, the problem is solved for three aeroelastic re- 
sponse cases. These are the bending, coupled bending- 
torsion, uncoupled bending-torsion responses of the tail. 
The tail is treated as a rectangular beam with thickness 
d = 0.005, width b = 0.5 and height 1, = 0.5. The tail 
material dimensionless modulii of elasticity and rigidity, 
E and G, are 1.8 x 10' and 0 . 6 9 2 ~  lo5, respectively. For 
the coupled bending-torsion case, the tail mass is assumed 
to vary in the x direction resulting into the distance be- 
tween the elastic axis and inertia axis of X H  = 0.05 (inertia 
axis is downstream of the elastic axis). For the uncou- 
pled bending-torsion case no mass variation is assumed, 
hence, x~ = 0. The mass per unit length, m, is taken 



as 0.0653 and the mass-moment of inertia per unit length 
around the elastic axis, I@,  is 0.00153. 

Figures 4 and 5 show a top view and a three- 
dimensional view of the critical points of vortex break- 
down and the stagnation pressures on the wing and tail 
for the bending tail response and the bending-torsion re- 
sponse, respectively. 

The results show that the locations of vortex break- 
down and stagnation-pressure distributions on the wing 
and tail for the bending response are different from those 
of the bending-torsion response. They are also different 
from the case of rigid tail at the same time step of it 
= 16,600 (Fig. 2). These results conclusively show the 
upstream effect of the tail response type on the vortex 
breakdown location and the pressure distribution on the 
wing and the tail. 

For the rigid tail, Fig. 6 shows the variation of the 
normal-force per unit length along the tail height at dif- 
ferent time steps, covering the range it = 14,601-17,000 
(curves A ,  B, . . . J at l4,6O 1 ; 14,900; ...; 17,000). The 
figure also shows the normal-force variation at the tail 
tip vz time. 

For the bending tail response, Fig. 7 shows the history 
of bending deflection and normal force per unit length 
vz tail height at different time steps covering the range 
it = 14,601-17,600. The bending vibration is clearly 
occurring in the first bending mode shape. The bending 
deflections and normal force per unit length vz time for 
the tail tip and midpoint are also given in Fig. 7. Studying 
these results, the following conclusions are reached: the 
normal-force and bending-deflection curves show large 
amplitudes in the first 1,500 time steps. Thereafter, they 
are suppressed by the aerodynamic damping force. The 
frequencies of the normal force are much higher than 
the frequencies of the bending deflection. No periodic 
response has been found within the computational time 
period of 3000 time steps. 

Figures 8 and 9 show the results for the coupled 
bending-torsion response of the tail. Figure 8 shows 
that the torsional deflection angles, hence, the torsional 
deflections are higher than the bending deflections. Both 
bending and torsional deflections for the coupled case 
are noticed to be one order of magnitude higher than the 
bending deflection case of Fig. 7. For the coupled case, 
the frequencies of the normal-force and twisting-moment 
per unit length are higher than the frequencies of the 
bending and torsion deflections. The bending and torsion 
loads and deflections are suppressed by the aerodynamic 
damping force up to the time step 5,800. No periodic 
response has been found within the computational time 
period of 7000 time steps. 

Figures 10 and 11 show the results for the uncoupled 
bending-torsion response of the tail (xe = 0). The 
bending and torsion deflections are almost twice as large 
as the bending and torsion deflections of the coupled case 
(Figs. 8 and 9). Again, both the deflections and loads are 

suppressed by the aerodynamic damping force. It is also 
noticed that the frequencies of the loads for this case are 
not as high as those for the coupled case. 

Figures 12 and 13 show the history of the tail total 
deflection vz the tail height for the coupled and uncoupled 
cases, respectively. It is observed that the maximum 
deflections of the uncoupled case are more than twice 
those of the coupled case. In the same figures, a three- 
dimensional view of the deformed tail is given showing 
its shape at it = 21,600 for the coupled case and it = 

21,000 for the uncoupled case. Figure 14 shows the 
cross-flow instantaneous streamlines at different chord 
stations passing through the tail at it = 21,000 for the 
coupled case. It is observed that the vortex-breakdown 
flow moves closer to and upward of the tail as the flow 
moves downstream. In Fig. 15, the spanwise, surface- 
pressure coefficient at different chord stations on the wing 
are shown for the coupled case at it = 16,600. This is the 
same time step for the rigid wing of Fig. 3.b. It is noticed 
that the suction pressure at x = 0.25 for the coupled case 
is smaller than that of the rigid tail. At x = 0.9891, the 
suction pressure for the coupled case is larger than that 
of the rigid tail. This comparison conclusively shows 
the upstream effect of the tail deflections on the wing 
aerodynamic loads. 

CONCLUDING REMARKS 

The buffet problem of a vertical tail due to the inter- 
action of vortex-breakdown flow with the tail has been 
simulated computationally and efficiently using a delta 
wing-vertical tail configuration. The wing aspect ratio 
and flow conditions have been carefully selected in order 
to produce unsteady vortex-breakdown flow. The solution 
has demonstrated the development of the tail buffet due 
to the unsteady loads produced by the vortex-breakdown 
flow. The problem is a multidisciplinary problem which 
requires three sets of equations to obtain its solution. 

In the present paper, we considered three tail re- 
sponses; namely, bending only, coupled bending and tor- 
sion and uncoupled bending and torsion. It has been 
shown that the total deflections of the coupled bending- 
torsion case are one order of magnitude higher than those 
of the bending case. Moreover, the frequencies of deflec- 
tions and loads of the coupled case are higher than those 
of the bending case. The total deflections of the uncou- 
pled bending-torsion case were more than twice those 
of the coupled case. This is due to the aeroelastic cou- 
pling between the bending and torsion response. A care- 
ful study has been performed to show the upstream ef- 
fect of the tail vibrations on the wing aerodynamic loads. 
It is conclusively shown that the tail vibrations change 
the vortex-breakdown locations and the unsteady aerody- 
namic loads on the wing and tail. These conclusions are 
in perfect agreement with the experimental data of Ref. 7. 
Work is underway to upgrade the tail model from beam 
equations to real tail equations using of finite-element 



structural-dynamics computer codes and actively control 
the buffet response. 
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Fig. I Top and three-dimensional views showing critical points of vortex breakdown and stagnation pressures on 
the wing and tail, k1, = 0.4, R, = 10,000, CY = 3S0, AR,,. = 1.0, AR, = 1.0, it = 14,600 (Rigid tail-Initial 
conditions). 
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Fig. 2 Top and three-dimensional views showing critical points of vortex breakdown and stagnation pressures on 
the wing and tail, it = 16,600 (Rigid tail). 



Fig. 3.a Spanwise. surface-pressure coefficient at different chord stations on the wing; it = 14,600 (Rigid tail- 
Initial conditions). 

Fig. 3.b Spanwise, surface-pressure coefficient at different chord stations on the wing; it = 16,600 (Rigid tail). 
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Fig. 4 Top and three-dimensional views showing critical points of vortex breakdown and stagnation pressures on 
the wing and tail, it = 16,600 (Bending-tail response). 
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Fig 5 Top and three-dimensional views showing critical points of vortex breakdown and stagnation pressures on 
the wing and tail, it = 16,600 (coupled bending and torsional tail response). 
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Fig. 6 History of normal force per unit length over the tail and the tip normal force per unit length vz time, 
it = 14,601-17,000 (Rigid tail). 
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Fig. 7 History of tail deflection and normal force per unit length over the tail and the tip and mid point deflections 
and normal forces vz time, it = 14,601-17,600 (Bending-tail response). 
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Fig. 9 History of tail deflections, normal-force and twisting-moment per unit length vz time for the tail tip and 
midpoint, it = l4,6O 1-2 1,600 (coupled bending-torsion tail response). 
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Force Distribution History 
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Fig. 10 History of tail total deflections, normal-force and twisting-moment per unit length vz time for the tail tip 
and midpoint, it = 14,601-17,600 (uncoupled bending-torsion tail response). 

Tip Bending Displacement & Force vs Time 
t " "  I -1 0.0080 

Midpoint Bending Displacement & Force vs Time 

0.020 - ;; W 
- 0.010 

-0.010 -0.15 

n n 
Fig. I I History of tail deflections, normal-force and twisting-moment per unit length vz time for the tail tip and 

midpoint, it = 14,601-17,600 (uncoupled bending-torsion tail response). 
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Fig. 12 History of tail total deflections over the tail and three-dimensional view of the tail at it = 21,600; 
it = 14,60 1-1 7,600 (coupled bending-torsion tail response). 
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Fig. 13 History of tail total deflections over the tail and three-dimensional view of the tail at it = 21,000; 
it = 14,601-17,600 (uncoupled bending-torsion tail response). 



Fig. 14 Cross-flow instantaneous streamlines at different chord stations through the tail, it = 21,000 (coupled 
bending-torsion tail response). 
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Fig. 1.5 Spanwise, surface-pressure coefficient at different chord stations on the wing; it = 16,600 (coupled bending- 
torsion tail response). 
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