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SUBSONIC WALL INTERFERENCE CORRECTIONS FOR FINITE-LENGTH
TEST SECTIONS USING BOUNDARY PRESSURE MEASUREMENTS

M. Mokry
High Speed Aerodynamies Laboratory
National Aeronautical Establishment
National Research Council Canada
Ottawa, Ontario
K1A OR6

SUMMARY

Subsonic wall interference corrections are evaluated using the Fourier solution for the Dirichlet problem in a circular cylinder,
interior to the three-dimensional test section. The required boundary values of the streamwise component of wall interference velocity
are obtained from pressure measurements by a few static pressure tubes (pipes) located on the cylinder surface. The coefficients of the
resultant Fourier-Bessel series are obtained in closed form and the coefficients of the Fourier sine series are calculated by the fast
Fourier transform, so that the method is very efficient and suitable for routine tunnel testing. A practical use of the method is demon-
strated on a theoretical example and typical model tests performed in the NAE 5 ft. X 5 ft. wind tunnel.
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NOMENCLATURE
a, b, Fourier components of u
i, Bn boundary values of a, b,
An’k, Bn’k coefficients of Fourier sine series

L lift coefficient of the model

a pressure coefficient
Cy, C, ¥ and z components of C,
D, differential operator
£, common notation for a, and b,
fn common notation for 4 and Bn
F, x . common notation for A, and Bm’k
I modified Bessel function of the first kind of order n
jn,k kth positive zero of J,
Jy Bessel function of the first kind of order n |
K, modified Bessel function of the second kind of order n
m integer power of 2, number of equal subdivisions of interval
M, stream Mach number
n index of the Fourier component
Pn,k, Qn’k coefficients of the Fourier-Bessel series
q dummy variable of integration
D, upstream reference pressure
Potenum plenum pressure
r radius of the control cylinder
r model radjus
r, sting radius
S reduced test section length
S reference area of the model

u, v, w reduced components of wall interference velocity
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» stream velocity
v volume of the model i
X, ¥, 2 Cartesian co-ordinates
X, p, 0 cylindrical co-ordinates
X5 X, x co-ordinates of the upstream and downstream ends of the control cylinder
XN Xy X co-ordinates of the source and sink, representing the model
B (1-M2)%
0% vortex strength
AM, Mach number correction
AU velocity correction
Aozy, Aa, correction to flow angle in the x, y and x, z planes
6, angle between the lift force and y axis
K ratio of specific heats
u doublet strength
s vnv,k eigenvalues
& reduced x co-ordinate
P.. upstream density .
o source strength
o, strength of the source-sink combination
1) disturbance velocity potential
[ “free air” part of ¢
by “wall interference” part of ¢
INTRODUCTION

The present paper extends the subsonic wall correction method of Mokry and Ohman! to the three-dimensional case. The
theoretical part of the paper has earlier been reported in Reference 2. Merits of a method that utilizes boundary pressure measurements
but does not require knowledge of the cross-flow properties of ventilated test section walls are discussed in References 3 and 4. In
essence, the relationship between the normal velocity and pressure difference across the wall is highly nonlinear, depending upon the
boundary layer development on the wall and the pressure field induced by the model. The utilization of the measured wall static
pressures as the (Dirichlet) boundary condition eliminates the need for a theoretical crossflow model, and thus indirectly ensures that
the true nonlinear character of the ventilated wall is properly taken into account. However, since the acquisition of wall static pressures
is required for each tunnel test; while the crossflow properties of the wall remain unknown, this approach is suitable as a post-test
assessment, but not as prediction.

In contrast to some recent techniques®-®, relying upon detailed computation of flow past a model both in the wind tunnel
and free air, the present paper .describes an inexpensive, engineering-type estimation of wall corrections for routine tunnel testing. It is
based upon the classical, linear wall interference concept, representing the model by singularities, deduced from the model geometry
and measured forces’. The validity of this approach may be disputed®, but it should always be possible to compare a sample of the
results with those obtained by the more elaborate techniques®-%, to decide whether in the circumstances the simple correction method
is adequate or not. In many instances the corrections turn out to be marginal® , so that routine use of flow computation techniques is
not justified.

The estimation of the far field disturbance due to the model by singularities allows to extract the axial component of wall
interference velocity on the test section boundary from the measured wall static pressures. The velocity correction at the model position
is obtained by solving the Dirichlet problem for the axial velocity in the test section interior. The normal components of interference
velocity (incidence and sideslip corrections) are derived from the zero vorticity condition. However, since it is impractical to measure
the pressures over the whole wall surfaces, a simpler solution, based on the circular cylinder interior to the test section, is proposed. The
pressures are measured only by two or four static pressure tubes (pipes) on the surface of the control cylinder. Using the periodicity
condition, the surface distribution of the axial component of the wall interference velocity is approximated by a Fourier expansion of
axisymmetric functions. The values of Fourier components on the upstream and downstream ends of the cylinder are obtained by a
“tailored” interpolation that allows a closed-form solution for the coefficients of the resultant Fourier-Bessel series. This type of
solution treats the effects of blockage and lift interference separately, providing agreement with the theory of Baldwin et al’ and
Wright!® of an infinite cylinder test section. The coefficients of the Fourier sine series are, as in the two-dimensional case!, calculated
by the fast Fourier transform, that makes the method very efficient and suitable for routine wind tunnel testing.
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GOVERNING EQUATIONS

The model is located at the origin x = ¥ = 0 of the (right-
streamwise oriented wind tunnel axis, Figure 2.
co-ordinates

handed) Cartesian system, where x is the co-
The flow is investigated in the region X, <x< X,, 0 <p <y, us

ordinate along the
ing the cylindrical

z
X, p=(y*+22)l2 g = gyon 2

ent stream is subsonic and that the disturbance velocity potential $=¢(x,0,6)
satisfies near the cylinder boundary the linearized equation

0 (2)
p2 002

According to small disturbance theory, the pressure coefficient at p = r, relates to ¢ as

0
Cy (x50) =-2 2 (09 3)

However, since the measuring device — the Pressure tube — is in fact slender bo
components should also be retained in Equation (3). Th

dy, see Figure 3, the quadratic crossflow velocity
the error,

€y are omitted here for the sake of linearity and no attempt is made to analyze

In the linearized flow region, that is in the region of validity of Equation ( 2), we can use the decomposition
¢ (%,0,0) = ¢, (x,0,0) + by (x,0,0)

4
The potential 9 satisfies Equation (2) in the linearized flow region and in the exterior of the control cylinder and obeys,
except in the vicinity of the vortex wake, the farfield condition

¢ >0 as x2+ ()2 > oo

Near the cylinder boundary, #p can be approximated as

v cos(e-eo) %
¢F (X7p96) T —— 1+ T
r e [x*+(8p)?1112
o X LB X

= o ®)
@RI 4 [y g
where 9 o is the angle between the lift force* and the y axis.

The first term of Equation (5), the horseshoe vortex, represents the lift effect of the model. Its strength is

1
'y=§SCL

o=m? @)
The last term of Equation (5), the doublet, st model. As shown by Baranofflz,

represents the displacement effect of the te.
strength of three-dimensional doublet is not affec

ted by compressibility, so that directly

pu=v (8)

we can replace the doublet term by the

For improved re

Presentation of the far field of an elongated body (missile ete.),
ce-sink combination

el force normal to the X axis
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where xy <0 is the location of the nose source and Xy > 0 that of the tail sink, as illustrated in Figure 4. An approximate value o
strength o, is )

g =B
foxpexy
In the limit x\, x; > 0 we recover the original doublet term and for a long cylindrical body of radius r,. we obtain

= gy
0“ 1rrm

which is also the expected limit for the source (or sink) strength, cf. Equation (7).

As shown by Hackett et al'3, a large variety of axisymmetric bodies can be generated by the source-sink plus source combin,
tions, so that more refined body representations for wall interference purposes seem unnecessary. However, further work is needed to
find suitable far field representations for slender bodies at high angles of attack.

The potential ¢, satifies Equation (2) inside the cylinder %, <x <x,, 0<p <r. The derivatives of ¢y, with respect to x,ﬁ
and z determine the wall interference corrections to the components of unit wind tunnel velocity. Their evaluation at the position of
the model, x = p = 0, is the subject of the next sections.

FOURIER SOLUTION OF THE WALL INTERFERENCE PROBLEM

Using the transformation

1
E=—(x-x,)

8

the left-hand side of Equation (2) reduces to the Laplacian in cylindrical co-ordinates. The axial velocity function

Oy, a.‘ﬁw ’
3 90 = (X, ;0 =p T (X, 70
u(&,p,0) o (x,0,0)=8 P (z,p,9)

then satisfies the equation

7u 1 3 au. 1d%

— o ()= — =0

282 P dp  op 2 392
in the region 0 < ¢ <5, 0 < p <r, where

1
s = ——(x2~xl) (12)

B8

From Equations (3), (4), (9) and (10) the values of the axial component of wall interference velocity on the boundary is obtained as

1 ¢y
u(t,r,0) = —B[—z' C,(x,1,0) + " (x,1,6)] (13)
Utilizing the periodicity of u and 3u/06 with respect to 0, we represent u in terms of the Fourier series
(=]
u(t,p,0) = ay(£,p) + n§1 [a,(£,p)cos n6 + b (£,p) sinnf ] (14)
where, by Equation (11)

D,a (tp)=0, n=0,12,...

Db (£0)=0, n=12,... (15)

and

D =—+—t+—--— (16)

The actual number of Fourier components we are able to exploit is given by the number of static pressure tubes. Thus for
T 3
two tubes located at § = 3 and §1r we have
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U(£,0,0) = ag(£,0) + b, (£,0)sin 0 (17a)

and for four tubes at = 0,%, T, -g-w, see Figure 2,
u(é,0,0) = ay(£,0) + a; (£,0)cos 6 +b, (£,0)sin 6 + a,(£,p)cos 20 (17b)

In order to solve for the Fourier components inside the cylinder, we introduce the boundary values

g (&) =ay&n)
b (§) =D (&) (18)
and express them in terms of the known values u(£,r,0), Equation (18). For the two-tube arrangement it follows from Equation (17a)

0= S luEr D) + weram)]

- 1 3
by(8) = S Tu(r5) - u(erSm] (19)
and for the four-tube érrangement from Equation (17b)

8o(0) = [0(ER0) * uEr ) + (e + (e Sm)
=i o)

8,8 = 3 [u(620) - u(giem]

by (B = JTu(teD) - u(trom]

1 T 3
52(5) = -4—[ u(g:rao) - u(garv_z—) + u(EJa”) - 11(5,1‘,57')] (19b)
Using Equations (15), we now can set up the following boundary value problem
D f (£p)=0 , 0<i&<s, 0<p<r
f.(E)=£) , 0<t<s
LOA=LOE , 0<p<

£ (s,0) = £,(5) (f)n . 0<p<r 20)

here f is used as a common notation for both a andb .

. Applying the method of separation of variables, see Reference 2, the solution is obtained in terms of a Fourier series in £ and
‘ourier-Bessel series in p:

oo . L(uep) . sinh vn’k(s~£) sinh vn’k‘g‘ ; o1
= e @} + + .
L&) ké]_ n,k L (k1) sin & kfl nk  ginh Vi %Ksinh VoS | " (n,P) @1
_kr
BTy
Ik
Vo = (22)

a2,k denotes the kth positive root of the equation J_(p) = 0. Since

3(0) = %Jn(p) 30
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the roots are easily generated by Newton’s method. The first 15 values of jo  @nd j, ., needed for the theoretical example below,
listed in Table 1. . E E

The boundary values are incorporated in the coefficients

S
2 -
Fox=3 f £,(8) sin p, & d&
0

T
f 5,0 G 3,0, 00 do

nk = he
erﬁ +1(Vn,kr) 0 elc
he
2 .
= f (0
Vn,kr Jnﬂ(vn,kr) n( )
Q= f,0) (23)

3 n
Vn,kr Jn+1(yn,kr)

It may be noted that the closed form integration of the Fourier-Bessel coefficients in the above formulas is due to employing the factor |
(p/1)" in the interpolation of the boundary values on cylinder ends, Equations (20). The coefficients of the Fourier sine series can be

evaluated, as has been done in the two-dimensional case!, by the fast Fourier transform: wi

m-1 9541 . 2njk
. o(s —)sin ——,
=0 m m

o]
I
gl
)

k=1,2,...,m/2-1 (24)

where m is an integer power of 2 and the discrete values of f'n are obtained using the odd extension of the boundary function f‘n(E) on
the interval 0 < £ < 2s. Accordingly, the Fourier sine series of Equation (21) is truncated to the first m/2-1 terms. For consistency,
the same number of terms is also used for the truncated Fourier-Bessel series.

WALL INTERFERENCE CORRECTIONS

3

Having constructed the velocity function (14), we can proceed to evaluate the velocity and Mach number corrections. The
correction to stream velocity U, applicable at the model position, is

0oy
AU_=U_-—(0,0,6) (25)
0x Al
where from Equations (9) and (10)
Oy, 1 X ,
x (0,0,0) = n u(- 5,0,0) (26)

Using Equations (14), (21) and (23), the required axial value

m/2-1 sin u, &
u(¢0,60)= X AL —
(E ) k=1 0.k IO (ﬂkr)
m/2-1 sinh v,  (s-%) sinhv, & 9
3 a0 g () — @7
k=1 sinh Yok S sinh VoS | Yoxt J; (vo,kr)
where, according to Equation (24)
2m-1 91 2nik
Ao,k = ; EO z‘io(s——-) sin —— (28)

As expected from the properties of a harmonic function u, the axial correction (25) proves to be independent of angle 8. Accordingly,
only the zeroth term of the Fourier expansion (14) contributes in Equation (27).

The Mach number correction is obtained from the differentiated relation between Mach number and velocity as

k-1 oy
AM, = (1+=M2) M_ —
= ( 3 )M, o (0,0,8) (29)

where the x derivative of the interference potential is given by Equation (26).

|
:
i
1



The corrections to the components of the flow angle (in radians) at the position of the model are

A il
& == (0,00)

0oy
Aa, = —5; (0,0,0)

(30)

where, again, the value of 6 is immaterial. As in the two-dimensional case!, the flow angle correction can be expressed in terms of the
velocity function u to within arbitrary constant terms. Integrating the total differentials of 0¢y,/0y and d¢y,/0z along a path between
the reference point x = X, p = 0 and the model position x = p = 0, we obtain

0 X
W W 1
'—g (05010) - ay (Xpoye) - V(_E :090) - V(O’O:G)

(23)
gy Pw %
E‘ (09036) - —_a.; (X19070) - W(" —6—-’0’9) - W(O,Oye)
s factor
; can b
can be where
ou
v(£,0,0) = f == (£,0,0)d¢
(24) 9y
3 0,9) = du 0
f(®on w(£,0,0) = o (60.0)dé
sistency,
are the conjugate velocity functions. For the application in the above differences, the selection of the integration constant is obviously
irrelevant, Using Equations (1), (21) and (23)
ons. The v(£,0,6) m/2-1 A} cospy:  m/2-1 a, (0)} cosh V) (s-§) 4,(s)} coshw, £ 1
D G e T T B TUI et — (31)
w(£,0,0) k=1 Bl,k 21, (p x) k=1 b, (0) sinh v, x5 Bl(s) sinh VIS | Vit Jz(vl)kr)
(25)

where, according to Equation (24)

©

P m-1 941 onjk

l’k_-n; ]_—Z_:O al(s m )Sin—_m_
(26) 2 m-1 92j 5
N itl . 2mk
B> A bl(s;—)sm——njl— (32)
=

Using Equations (4) and (5) we finally obtain

! a¢ v B
A&y =y(- F,O,G) - v(0,0,0) + g (XI,O,B) - ‘8"1'; ;;‘2“ cos 60

(@1

! 39 vy B
Ao, = w(- B—,O,G) - w(0,0,0) + P (%4,0,0) - == ——sin 0,

8
%

(33)

The flow angles 3¢/dy and 0¢/0z at x = X, p= 0 can either be measured or, if the test section is sufficiently long, set equal to
e upstream flow angles, known from empty tunnel calibration.

The second derivatives 8¢, /0x2, 32¢, /0xdy and d2¢y,/dxdz, representing the pressure gradient and streamline curvature
are readily obtained by differentiating the series (27) and (31) with respect to &. For the tunnel test to be correctable by a
mple adjustment in stream Mach number and flow inclination, the second (and higher) derivatives are supposed to be small.

fects,

UTOCORRECTION PROPERTIES OF THE METHOD

As pointed out by Capelier, Chevallier and Bouniol in connection with a similar method’, the velocity correction compensates
ally for small errors of the reference velocity level. This is of particular importance to three-dimensional ventilated test
ions, since very often as reference pressure is taken that measured in the surrounding plenum chamber. Denoting by a tilde the
ntities based on the plenum pressure,p ..., We write for the boundary pressure coefficient

Utomatic

Ep (x5,0)=C, (x,0,0) - C

Pplenum
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where

Ppienum ~ P,

CPplenum_ 1 w2
Epeo o

According to Equation (13), the boundary value of the axial velocity function is

T (Ex0) = 1~ 0y _ 8

u (E?ra ) - B [E Cp (X’r?e) + _é;{— (Xarge)] - U(E,l',g) +.2— Cpplenum
By linear superposition, the solution on the tunnel axis is obtained as

T (£0,0) = u (£,0,0) +§-c

Pplenum

where u (£,0,0) is given by Equation (27). From small disturbance theory it also follows that the (fictitious) stream velocity correspo
ing to pplenum is

~ 1
U= -z
=0 1 20 )

Pplenum

Consequently, the corrected stream velocity at the model position is
1 % o~ 1. % ~ ~
U +AU_ =U_[1+ 5 u(- ?,0,0)] =U_[1+ 5 u (- E,O,G)] =U_+AU_

if the products of small terms are neglected. Similarly
M_+AM_=M_+AM_

This simple result has far reaching implications. It shows that, as long as the reference pressure does not differ from the upstream static
pressure greatly, we always arrive at the same value of the corrected stream Mach number. The present method thus provides the much
needed correspondence between the plenum pressure and the stream Mach number at the position of the model. As a matter of fact,
each tunnel run that incorporates the wall pressure measurement qualifies as a calibration run. This also implies that the empty tunnel
calibration (plenum pressure versus test section Mach number) should not be applied towards the Mach number corrected according to
the present method.

THEORETICAL EXAMPLE

To show the feasibility and accuracy of the present method, a test example is first worked out for a theoretical case of an
infinjtely long cylindrical test section. For the solid wall boundary condition

a
5%()(,1',6) =0, -oo<x<oo, 0<HO<2r

and ¢, described by Equation (5), the exact solution satisfying the upstream condition

lim" 3¢
= (5p.0)=0

. X—>-00

js9-10

_yeos6-6) [, 9 K (q)+aK,(a) a, ax
Vo 4r r r 7 L(9) - al(q) L (T) s (Er—) a4

1 K@
~ | == —l—~10<‘i‘.r-’i)cos%>dq

2npr |Br w L(a)
> K (q)
i 1 9, . gx
" 22y f L oG asin () da @4
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Selecting the values r = 1 (arbitrary length units, L), M

oo

=0.7,C, = 1.0, 6, =105; r, =0.05 (L), V=0.02 (L3),S=0.1 (L2)
and using Equations (8)-(5), the pressure coefficients are generated at 9 = 0, —12£, x, -2—71' and 16 equidistant points on the interval
-1.6 <x < 1.6 (L), see Table 2. The comparison of the exact correction values, calculated from Equations (29), (30) and (34), with
those obtained by the present method from the generated pressures is given in Table 3. It is seen that already such a small pressure
sample as that given in Table 2 yields technically acceptable accuracy of the corrections. As shown in Reference 2, further improvement
can be obtained by increasing the number of pressure points and extending the interval of x farther upstream and downstream. In
practice, there are of course limits imposed by the actual physical length of the test section and the number of pressure orifices that can
be scanned.

CORRECTIONS FOR AN AIRCRAFT MODEL

Figures 5a - b show pressure distributions measured by static pressure pipes above (6 = 90°) and below (8 = 270°) a
transport aircraft model in the NAE 5 ft. X 5 ft. blowdown wind tunnel. The 1 in. diameter pipes, sketched in Figure 3, are directly
attached to the 20% perforated walls. Since the side force is essentially zero, two tubes are sufficient for the determination of the flow
angle correction, but for a more accurate evaluation of the Mach number correction four tubes would be preferable, cf. Equations ( 19a)
and (19b). The span of the (straight) wing is 47 in. (78% of the section span), the model volume is V = 1100 in.? and the reference
area, on which the force coefficients are based, is S = 220 in.2. The point where the corrections are evaluated (x/h = 0) is selected to
be the intersection of wing quarter-chord lines. It is seen that with respect to the pressure pipes, extending over the perforated test
section length, the model is located too far downstream. In the higher incidence case, Figure 5b the upstream pressure coefficients
(based on the plenum pressure) converge to zero, but in the lower incidence case, Figure 5a they tend to a slightly negative limit. This
is simply an indication that the pressure established during the tunnel run in the plenum chamber is higher than that in the upstream
portion of the test section. This affects the Mach number correction, but presumably not the resultant, corrected Mach number (see
the autocorrection properties of the method). In both cases, Figures 5a and b, the Mach number correction is found small and the angle
of attack correction negligible.

CORRECTIONS FOR A SLENDER MODEL

Figures 6a - ¢ show pressure distributions measured by four static pressure tubes during a test of a rocket launcher model,
again in the NAE 5 ft. X 5 ft. wind tunnel. The body has diameter 6.5 in. and length 48 in.; with respect to the rails it is again posi-
tioned too far back. The forces are normalized by the circular cross-section of the body. The differences between the upstream
pressures on the side tubes (§ = 0° and 180°) and the top and bottom tubes (6§ = 90° and 270°) are puzzling, particularly since
they already exist near zero incidence, see Figure 6a. Admittedly, the axial symmetry is somewhat disturbed by attachment lugs on top
of the model and by the downstream influence of a vertical strut!4 (neither is shown in the figures), but we are not sure if this can

Pressure and the representation of the model far tield by the axial source-sink combination is questionable for such a high incidence.
In any case, the evaluated Mach number correction is small at all three incidences, Figures 6a - c. The angle of attack correction is small
except for.the low incidence case, Figure 6a which is not impossible, but contrary to our expectations.

CONCLUSIONS

A practical method has been presented for the assessment of three-dimensional wall interference corrections from boundary
bressures, measured by static pressure tubes at the test section walls, and the aerodynamic forces, acting on the model. The method is
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TABLE 1

ZEROS OF BESSEL FUNCTIONS Jy AND J,

k ok Jx
1 2.40483 3.83171
2 5.52008 7.01559
3 8.65373 10.17347
4 11.79153 13.32369
5 14.93092 16.47063
6 18.07106 19.61586
7 21.21164 22.76008
8 24.35247 25.90367
9 27.49348 29.04683
10 30.63461 32.18968
11 33.77582 35.33231
12 36.91710 38.47477
138 40.05843 41.61709
14 43.19979 44.75932

15 46.34119 47.90146



TABLE 2
PRESSURE COEFFICIENTS ON THE CONTROL CYLINDER

(THEORETICAL EXAMPLE)

. CP .
0=0 0=n/2 f=qg 0 =3/2¢
-1.5 0.00024 -0.00115 -0.00035 0.00104
~-1.3 0.00033 -0.00200 -0.00066 0.00167
-1.1 0.00034 ~-0.00854 -0.00130 0.00258
-0.9 -0.00001 -0.00645 -0.00273 0.00371
-0.7 -0.00154 ~-0.01207 -0.00599 0.00454
- -0.5 -0.00607 ~0.02268 -0.01309 0.00351
-0.3 -0.01553 -0.03967 -0.02573 -0.00159
~0.1 -0.02661 -0.05670 -0.03933 ~-0.00924
0.1 -0.02900 -0.05909 -0.04172 -0.01163
0.3 -0.02176 -0.04590 -0.03196 -0.00782
0.5 -0.01442 -0.03103 -0.02144 -0.00484
0.7 -0.01081 -0.02134 -0.01526 -0.00473
0.9 -0.00962 -0.01606 -0.01234 -0.00590
1.1 -0.00940 -0.01328 -0.01104 -0.00716
1.3 ~0.00946 -0.01178 -0.01044 -0.00811
1.5 -0.00956 -0.01095 -0.01015 -0.00876

: TABLE 3

WALL INTERFERENCE CORRECTIONS ( THEORETICAL EXAMPLE)

Present Method
Exact -1.6<x<16
m= 32
AM_ 0.00724 0.00715
Aa,  (deg) -0.05900 -0.05420
Lo, (deg) 0.22020 0.20228
0AM, /ox  (1/L) 0.00210 0.00207
0Aa, /3% (deg/L) -0.08254 -0.08123

0w, /ax (deg/L) 0.30803 0.30315
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FIG. 1: POSITIONING OF STATIC PRESSURE TUBES
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FIG.2: CO-ORDINATE SYSTEM
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FIG. 3: DETAIL OF THE STATIC PRESSURE TUBE
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FIG. 4: SOURCE-SINK REPRESENTATION FOR AN ELONGATED BODY

1M - 0.6504 AM = -0.0037
]« = 4.457° Ax = -0.012°
1 CY - 0.0008
{ 0z - 0.3925

= FIG. ba: WALL PRESSURES FOR AN AIRCRAFT MODEL
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1M - 0.5474 ~ AM = -0.0031
1« - 6.152° Ax = -0.063°
4 cY = 0.0004
CZ - 0.5367

wn
1M - 0.7920 AM = -0.0010
o] o« = -0.467° A = -0.353°
571 CY = -0.0105

{ ¢z - -0.0117

;

FIG. 5b: WALL PRESSURES FOR AN AIRCRAFT MODEL

FIG. 6a: WALL PRESSURES FOR A SLENDER MODEL
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1M = o0.7815 AM = -0.0032
o« = 9.790° Ax = -0.038°
4 CY = -0.0052
{0Z - 0.2875

- 900 FIG. 6b: WALL PRESSURES FOR A SLENDER MODEL
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0.7868 AM = -0.0033
20.308° Ae = 0.051°
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FIG. 6c: WALL PRESSURES FOR A SLENDER MODEL
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