TRANSITION REYNOLDS NUMBER COMPARISONS IN SEVERAL MAJOR TRANSONIC TUNNELS

by
N. S. DOUGHERTY, JR.
ARO, Incorporated
Arnold Air Force Station, Tennessee
and
FRANK W. STEINLE, JR.
NASA/Ames Research Center
Moffett Field, California
Boundary-layer transition and test section environmental noise data were acquired in six major transonic wind tunnels as a part of a broader correlation of the effect of free-stream disturbances on transition Reynolds number. The data were taken at comparative test conditions on a sharp, smooth 10-deg included-angle cone. It was found that aerodynamic noise sources within the test section were the dominant sources of unsteadiness and that transition Reynolds number provided a good indicator for the resulting degradation in flow quality. Amplitudes, frequency composition, directivity, and origin of these disturbances are described.

I. Introduction

In the past several years there has grown an increasing awareness that the dynamic flow environment in a wind tunnel is influencing aerodynamic test results. With today's increasing needs for improved accuracy in results and expanding scope of test requirements has come the need for better definition of the wind tunnel dynamic flow environment in order that the quality of testing might be improved.

The best indicators of flow quality in a given wind tunnel are:

1. the variations in Mach number,
2. the variations in flow angularity, and
3. model transition Reynolds number.

It is well known that transition Reynolds number is affected by free-stream noise and turbulence levels, model vibrations, heat transfer between the model and the free stream, and the condensation of moisture from the free stream. It is also well known that transition Reynolds number is influenced greatly by the local velocity and pressure gradients about a model and local model-generated disturbances.

Morkovin(1,2) has provided an overview of the extensive data available from research on transition and points out the wide disparity in results. Still, there is no fully adequate universal correlation of transition Reynolds numbers as measured in wind tunnels or between wind tunnels and free flight. Indeed, there is still a lack of understanding of the detailed nature of transition, although much progress has been made through the use of linear stability theory as described in Ref. 3, for example. There is an advantage to acquiring transition data on bodies of only simple geometry, i.e., slender cone and planar. But as pointed out by Morkovin, it is essential that an adequate documentation of the flow environment be made when performing experiments on natural transition because of the strong influence of the environment on the results.

Transition Reynolds number, therefore, can be used as an indicator for the dynamic aspects of the flow quality in a wind tunnel. This is in much the same manner that the drag data on the "turbulence sphere" were used in low-speed wind tunnels (less than 0.3 Mach number) to obtain the "turbulence factor." The "turbulence factor" was defined as the effective increase in Reynolds number determined from differences in critical drag Reynolds number from the known reference value in free air. Pope gives a value of 1.4 in Ref. 4 for this "turbulence factor" determined from spheres where the air possibly has too much turbulence for good test results. When measurements of transition Reynolds numbers were first made on models in supersonic wind tunnels (Ref. 5, for example) there appeared to be trends with tunnel size, Mach number, and unit Reynolds number. Pate and Schucr showed that most of the observed variations on planar and cone models(6,7) could be explained by the variations in aerodynamic noise level radiated from the tunnel wall boundary layer, which varies as the boundary-layer properties vary with Mach number and unit Reynolds number. They developed an empirical correlation from data acquired in some ten different tunnels at Mach numbers from 3.0 to 8.0. This correlation used only the skin friction and the displacement thickness of the wall boundary layer to characterize the noise strength. The tunnel
size variation appeared in radiation laws for wall area, distance from the wall, etc. Accordingly, lowest transition Reynolds numbers occurred in the smallest supersonic tunnels.

The present study is concerned with the dynamic flow quality in transonic tunnels. Numerous studies in transonic tunnels have revealed the presence of additional disturbances in transonic test section flow, and above wall boundary-layer radiation, most of which are of acoustic origin and are associated with the ventilated test section wall. Required to establish Mach numbers near 1.0 and to reduce supersonic wave disturbances. Examples of the various types of acoustic disturbances found in several transonic tunnels are given in Refs. 8 through 12. In view of the present-day requirements for transonic testing, there is a particularly urgent need for critical evaluation of the dynamic environment in transonic tunnels. It was shown by Mabey (13) that flow unsteadiness at subsonic and transonic speeds can affect both steady-state and dynamic test results. Mabey gives a proposed dynamic criterion for the maximum acceptable level of unsteadiness in the flow for transonic buffeting evaluation which is exceeded at some test conditions in many existing transonic tunnels.

Transition data are being acquired on a slender cone fabricated by ARO, Inc., at the USAF Arnold Engineering Development Center (AEDC). At each test condition, simultaneous measurements of the free-stream fluctuating pressure level are made using two flush-mounted microphones on the surface of the cone. Data were first acquired in the two 16-ft Propulsion Wind Tunnels (transonic and supersonic) and in the 4-ft Aerodynamic Wind Tunnel at AEDC. With the cooperation of the National Aeronautics and Space Administration (NASA) and the U.S. Air Force, additional testing has been performed in several tunnels at the Ames and Langley Research Centers. A list of participating tunnels to date including the Calspan Corp. and Naval Ship Research and Development Center tunnels is given in Table 1. These tests have included a variety of subsonic, transonic, and supersonic variable density and atmospheric turbulence of varied size and geometry to obtain as general a correlation as possible of the effect of experimental noise on transition. Seven of these tunnels are in the United Kingdom, France, and the Netherlands for correlation among tunnels used in common Western European aircraft systems development. With the exception of the industrial manufacturer tunnels, the list in the U.S. now includes most of the major domestic tunnels where the cone tests have provided a common basis of comparison using a standard model with standardized test procedures.

Table 1

<table>
<thead>
<tr>
<th>List of tunnels participating in correlation study</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEDC 16-ft Transonic Propulsion Wind Tunnel</td>
</tr>
<tr>
<td>AEDC 16-ft Supersonic Propulsion Wind Tunnel</td>
</tr>
<tr>
<td>AEDC 4-ft Transonic Aerodynamic Wind Tunnel</td>
</tr>
<tr>
<td>NASA/Ames 11-ft Transonic Wind Tunnel</td>
</tr>
<tr>
<td>NASA/Ames 14-ft Transonic Wind Tunnel</td>
</tr>
<tr>
<td>Nasal/Ames 12-ft Pressure Tunnel</td>
</tr>
<tr>
<td>NASA/Langley 8-ft Transonic Pressure Tunnel</td>
</tr>
<tr>
<td>NASA/Langley 16-ft Transonic Tunnel</td>
</tr>
<tr>
<td>NASA/Langley 16-ft Transonic Dynamics Tunnel</td>
</tr>
<tr>
<td>Calspan 8-ft Transonic Tunnel</td>
</tr>
<tr>
<td>Naval Ship R & D Center 7-x 10-ft Transonic Tunnel</td>
</tr>
<tr>
<td>RAE 8-x 8-ft Supersonic Wind Tunnel</td>
</tr>
<tr>
<td>RAE 8-x 8-ft Transonic Wind Tunnel</td>
</tr>
<tr>
<td>RAE 3-x 4-ft Supersonic Wind Tunnel</td>
</tr>
<tr>
<td>ARV, LTD. 9-x 8-ft Transonic Tunnel</td>
</tr>
<tr>
<td>ONERA 6-x 6-ft S-2MA Transonic Tunnel</td>
</tr>
<tr>
<td>ONERA 2.5-x 1.83-x 5-3MA Transonic Tunnel</td>
</tr>
<tr>
<td>NLR 6.55-x 5.28-ft High Speed Tunnel</td>
</tr>
</tbody>
</table>

*Prent Study |
*Background Noise Data Only

Trenor, Steinle, et al. (14) showed that best agreement of static aerodynamic data derived from tests of a high-subsonic speed transport aircraft model at cruise Mach numbers in the AEDC 16-ft Transonic Propulsion Wind Tunnel, the NASA/Ames Research Center 11-ft Transonic Wind Tunnel, and the Calspan 8-ft Transonic Tunnel was obtained by accounting for relative Reynolds number effects between facilities. Here, the relative Reynolds number effects were defined using the AEDC 10-deg transition cone results in each of these tunnels. For example, it is shown in Ref. 14 that a significant improvement of the correlation achieved between these tunnels was obtained by adjusting the drag coefficient at zero-normal-force angle of attack with a correction factor derived from the cone transition Reynolds number data. These results of Ref. 14 substantiate the need for developing a method for predicting these corrections to Reynolds number to improve the extrapolation of wind tunnel test results to full-scale flight conditions, i.e., a "turbulence factor" for transonic tunnels. Although the "effect" associated with these differences in transition characteristics between tunnels is of prime importance in adjusting the data, the "cause" is of particular significance since it relates directly to predicting the "effect" in new and different facilities. This illustration of improvement in agreement of results between transonic facilities suggests the use of transition Reynolds number for such corrections to be both technically appropriate and productive.

The purpose of this paper is to present the cone test results in the six transonic tunnels of the USAF and NASA indicated in Table 1. These were comparative tests at matched flow conditions which illustrate the variations in transition Reynolds numbers that occurs in these particular transonic tunnels currently employed in new aircraft systems development. Analysis of data acquired in other tunnels continues and will be reported...
in the future in a broader correlation of results.

II. Apparatus

Calibration Model

The transition calibration model is shown in Fig. 1 and consists of a smooth, sharp, 10-deg included-angle cone which was machined from two solid pieces of stainless steel, heat treated, assembled, finished ground, and polished to a surface finish of 8 to 12 microinch root-mean-square (μin.-rms) waviness. The tip bluntness is equivalent to less than a 0.005-in. diameter. Length of the cone is 3 ft.

The cone is equipped with a traversing pitot probe for transition detection, two surface-mounted 1/4-in.-diam condenser microphones, a surface temperature thermocouple peened just beneath the surface near the base of the cone, and a vertical-axis-sensing piezoelectric accelerometer for assessing microphone acceleration sensitivity, which in all tunnels to date has been found to be insignificant.

The traversing probe is equipped with a 1/8-in.-diam strain-gage-type pressure transducer close-coupled to the sensing tube. The probe tip rides along the surface of the cone and has a tip opening height of nominally 0.005 in., allowing the survey of very thin boundary layers on the forward portion of the cone.

The cone has been physically aligned to the geometric centerline of each wind tunnel. A sufficient number of tests for transition sensitivity to small angles of attack and sideslip have been performed to assess the effects of crossflow on the measured transition location. All of the data presented in this paper are at an assumed zero-degree incidence with the test section flow. Use of the cone surface thermocouple is for verification of thermal equilibrium between the model and the free stream. The thermocouple was installed for tests in only ten of the wind tunnels to date. It is assumed in all of the results presented in this paper that the data were acquired at adiabatic wall conditions for the cone. Efforts were made to hold tunnel total temperature near constant where possible and to allow sufficient time for heat transfer to be minimized in the conduct of testing.

Facilities

General features of the six subject tunnels are given in Table 2. In addition to the range of test section size from 4-ft square to 16-ft square and, in the case of the NASA/Langley Research Center tunnels, 15.5-ft octagonal, these particular tunnels provide an interesting comparison for three basic test section ventilation concepts.

The two AEDC tunnels have the pure perforated-wall ventilation configuration using 60-deg inclined differential resistant holes developed for optimized cancellation of model-generated shock and expansion waves at Mach numbers near 1.2. The AEDC 16-ft transonic Propulsion Wind Tunnel has 3/4-in.-diam holes in a pattern that gives a uniform 6-percent porosity. The AEDC 4-ft Aerodynamic Wind Tunnel has 1/2-in.-diam holes with a sliding backing plate for varying the porosity. A nominal 5- or 6-percent porosity is used at subsonic Mach numbers and above Mach 1.2. In the range of Mach numbers from 1.0 to 1.2, a reduced porosity schedule varies Mach numbers by three improved wave cancellation. The two AEDC tunnels use coarsely spaced longitudinal slots at nominally 4- to 5-percent porosity designed for minimized subsonic wall interference and contoured for optimized supersonic axial Mach number distribution. This purely slotted-wall configuration, therefore, provides direct contrast with the purely perforated-wall configuration.

The two ARC tunnels use finely spaced longitudinal slots at 5.6-percent porosity with corrugated metal inserts that, in effect, combine the features of the purely slotted and purely perforated-wall configurations.

Table 2 General features of the tunnels

<table>
<thead>
<tr>
<th>Tunnel</th>
<th>Section Size (ft)</th>
<th>Shape</th>
<th>Configuration</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEDC 4T</td>
<td>4.0</td>
<td>Square</td>
<td>Perforated</td>
<td>Variable</td>
</tr>
<tr>
<td>AEDC 16T</td>
<td>16.0</td>
<td>Square</td>
<td>Perforated</td>
<td>Variable</td>
</tr>
<tr>
<td>NASA/LRC 114T</td>
<td>11.0</td>
<td>Square</td>
<td>Slotted</td>
<td>Variable</td>
</tr>
<tr>
<td>NASA/LRC 12X15T</td>
<td>13.8 x 15.5</td>
<td>Square</td>
<td>Slotted</td>
<td>Atmospheric</td>
</tr>
<tr>
<td>NASA/LRC 9T17T</td>
<td>7.1</td>
<td>Square</td>
<td>Slotted</td>
<td>Variable</td>
</tr>
<tr>
<td>NASA/LRC 136T</td>
<td>13.6</td>
<td>Octagonal</td>
<td>Slotted</td>
<td>Atmospheric</td>
</tr>
</tbody>
</table>

III. Experimental Measurements

Transition Location

Transition location as measured by the traversing probe will be defined as shown in the typical pitot pressure profiles in Fig. 2. The laminar boundary layer exhibits a decreasing steady pitot pressure to some minimum value. (This is with fluctuating components removed by a 2-Hz low-pass filter.

*Quarter-inch microphones were used in all of these tests except for those in the two NASA/Langley Research Center tunnels where 1/8-in. strain-gage pressure transducers were used.
The fluctuating portion of the traversing probe transducer signal, high-pass filtered above 2 Hz, is shown in Fig. 2b. The frequency response of the probe-transducer system is relatively low, 3 db point at 30 Hz; however, there is sufficient low-frequency composition of the turbulent bursts during transition to indicate a rise in the integrated true-root-mean-square level of pressure fluctuations as seen in Fig. 2b. The rms level attains a well-defined peak near the midregion of transition at a location corresponding to the maximum slope of the steady pressure profile. This peak in rms signal has been used by some investigators to define transition. There is some question about precisely where transition begins. The filtered fluctuating portion of the probe transducer signal has consistently shown a discernible growth in oscillations slightly ahead of the minimum point in the steady-pressure profile. The growth of oscillations is first exponential as indicated in Fig. 2b followed by linear growth with increasing x-distance to the peak in rms amplitude midway through transition. In this paper, however, the above-defined onset and end of transition points based on the steady pitot pressure will be used for the calculation of transition Reynolds numbers.

Onset of transition Reynolds number, \(Re_t \), is defined as follows

\[
Re_t = \frac{U}{v} \sqrt{ \frac{x_1}{x_2} } \quad (1)
\]

and the end of transition Reynolds number, \(Re_T \), as

\[
Re_T = \frac{U}{v} \sqrt{ \frac{x_T}{x} } \quad (2)
\]

These length Reynolds numbers use the free-stream unit Reynolds number per foot, \(Re/ft = U/v \); however, it is recognized that local surface flow conditions are altered at supersonic speeds by the presence of the bow shock, which becomes attached at approximately \(M = 1.02 \). The pitot profiles were recorded in analog form on "X-Y" plotters using a forward moving traverse at all times, because there is appreciable hysteresis when traversing rearward as compared to traversing forward. Greatest uncertainty in measurements lies in the subjective interpretation of the pitot profiles which can be read with statistical confidence to approximately 0.5 in., 3o. The end of transition point has been more commonly used by transition investigators, because it is more clearly definable than the onset point. The end of transition point will be used for the basic tunnel comparison. Onset of transition data are given in addition in the correlation of results in the attempt to establish the influence of noise on the point where laminar flow breakdown occurs.

Background Noise

The most direct measurement of the test section background noise level is with a flush-mounted microphone on the surface of the model. This measurement is taken to be the sound pressure level at the tunnel centerline to which the test model is exposed. In many of the wind tunnels in which the cone has been tested, simultaneous measurements have also been taken on the test section wall opposite the model microphones. There have been small differences in these measurements on the wall compared to those on the cone; but, use of the wall microphone once correlated to the cone has allowed a permanent monitoring station for assessment of the effect of any future changes in the tunnel following the cone test.

Ideally, the fluctuating pressure measurement should be taken under a laminar boundary layer, free of local turbulence influence. However, in practice it has been found for most of the transonic tunnels.
that there is little difference on the cone between readings under a laminar or turbulent boundary layer. But, there is a large difference (up to a factor of two or more) if the microphone happens to be under the transition zone where the local disturbances associated with the transition process are recorded in addition to the free-stream background disturbances. Separation of the two microphones by an 8-in. axial distance, as shown in Fig. 1, ensures that either one or the other microphone will not be in the transition zone, thus giving a reasonably valid background noise measurement. The 45-deg difference in roll orientation of the two cone microphones (see Fig. 1) has given no appreciable differences in measured amplitudes.

The microphones have been calibrated in-place in each tunnel by physical application of a 1-kHz sinusoidal pressure wave at either a 140- or 160-db sound pressure level (Ref. 0.0002 µbar) with estimated uncertainty of ±0.5 db at 160 db. Background noise levels have been recorded on magnetic tape to 10 kHz or 20 kHz frequency response. Most of the energy (>95 percent) has been found to occur within 10-6-kHz band-width and >98 percent within 20 kHz in most of the tunnels. Background sound pressure levels have been recorded using a true rms voltmeter with 1-sec time constant and approximately 10-sec averaging time over the full recording bandwidth. On the low-frequency end, the 1/4-in. condenser microphones begin to exhibit roll-off at 50 Hz; however, disturbances as low in frequency as 10 Hz have been identifiable.

The time-averaged, frequency-integrated, true-root-mean-square fluctuating pressure represents the square root of the power spectral density over the full recording bandwidth and is thus defined as \sqrt{P}. The fluctuating pressure has then been normalized by q_∞ to fluctuating pressure coefficient, ΔC_p, defined as follows:

$$\Delta C_p = \frac{\sqrt{P}}{q_\infty} \times 100, \text{ percent} \quad (3)$$

It is recognized that there are vorticity fluctuations (turbulence) in the free-stream flow in addition to the sound waves. Pure vorticity fluctuations are not accounted for by the microphone measurements; however, a portion of the free-stream velocity fluctuations are sound-wave coupled. These are accounted for in the measurement of fluctuating pressure if a plane-wave assumption is made for the propagation of the sound and the further assumption that the sound waves are isotropic. Defining turbulence intensity (TI) as the rms fluctuating velocity percentage of free-stream steady velocity over the same bandwidth, a rudimentary estimate is made for the relationship between fluctuating pressure coefficient (C_p) and turbulence intensity (TI) that

$$\Delta C_p = \frac{2}{M_\infty} (TI) \quad (4)$$

Vorticity fluctuations are usually traceable to conditions existing within and upstream of the stilling chamber. Direct measurements of turbulence intensity can be made using hot film or hot-wire anemometers both in the test section and in the stilling chamber. Such measurements are difficult to make and to interpret and should include all three Cartesian-coordinate axes of velocity fluctuation as the isotropic assumption is not always valid. Illustration of this observation that the turbulence may not be isotropic is taken from results by Uheroi given in Fig. 3. Uheroi found that there is dissimilar attenuation of stilling chamber turbulence while passing through the nozzle contraction for axial and cross-stream components. Figure 3 presents the effect of the contraction on the absolute intensity of the filaments and shows the cross-stream components to be amplified with maximum amplification near Mach 1.0. For this reason, stilling chamber vorticity fluctuations at transonic speeds cannot be ignored. Some turbulence data
...are available for the AEDC 16-ft transonic propulsion wind tunnel and the NASA/Langley 8-ft transonic pressure tunnel and 10-ft transonic tunnel. The data from all three of these tunnels suggest appreciable anisotropy of turbulence in the transonic test sections with maximum amplitudes on the order of 1.0-percent τ₁ at Mach 1.0.

In contrast to this level of turbulence intensity, the cone ΔCₚ data have revealed considerably higher amplitudes from acoustic sources than would be expected even from comparatively large stilling chamber turbulence such that it is a safe assumption that the ΔCₚ measurements account for most of the freestream disturbances affecting transition Reynolds number. Thus, in this paper, the fluctuating pressure coefficient (ΔCₚ) alone will be used to correlate the transition data.

IV. Results

AEDC 4T

The 10-deg cone results obtained in the AEDC 4-ft Aerodynamic Wind Tunnel (AEDC 4T) are presented in Fig. 4. The dominating disturbances are whistling tones emanating from the perforated walls and maximum in amplitude (ΔCₚ) at Mach numbers near 0.8 and near 1.2. The maximum amplitude recorded at maximum qₐₐ was 152 db. These tones have been identified as edgetones which are nearly discrete in frequency, standing out as much as 20 db above the background random noise. They are caused by interaction of a vortex forming over each hole with the sharp trailing edge of the hole. Varied suction and porosity (+) give rise to differing harmonic content of the noise. Documented here are the end of transition Reynolds numbers at corresponding ΔCₚ levels at various Mach number and constant unit Reynolds numbers of 2.0 x 10⁶, 3.0 x 10⁶, and 4.0 x 10⁶. Tunnel total temperature, Tₜ, was held near constant at 125°F and the total pressure, pₜ, varied to obtain this unit Reynolds number variation.

AEDC 16T

The cone results obtained in the AEDC 16-ft Transonic Propulsion Wind Tunnel (AEDC 16T) are presented in Fig. 5. There is a sharply defined resonance condition at 0.709 Mach number produced by the first-stage (fundamental) edgetone from the perforated walls. The degree of amplification in ΔCₚ is reduced as unit Reynolds number is increased from 2.0 x 10⁶ to 6.0 x 10⁶ as shown in Fig. 5. This was at near constant 120°F total temperature and varied total pressure as in AEDC 4T. The amplification is produced by the edgetone frequency coinciding with the twelfth fundamental natural reverberation frequency of the test section at nominally 560 Hz. The reverberation frequency is calculated from the following expression:

\[f_n = \frac{m^2 c_∞^2}{4 L_x^2 (1 - N_e^2)} \]
where L_x is the cross-sectional dimension of the test section, 16.0 ft; n is the number of waves involved, 24. This is a pure transverse mode of resonance where oblique initial and reflected waves are in phase and reinforce the vortex oscillation over each hole. Equation (5) is also given in Refs. 8 and 17 to explain discrete tone resonances where the sound waves were reinforced due to reflections at the walls. It is this characteristic type of resonance at some particular high subsonic Mach number that is responsible for the presence of large acoustic disturbances in most transonic tunnels. The resonance condition in AEDC 16T was effectively eliminated by tapping the inside surfaces of all four walls closed. Lower noise and higher corresponding transition Reynolds numbers at a unit Reynolds number of 2.0×10^6 are evident with the walls taped for Mach numbers between 0.8 and 0.9.

The edgetone frequencies for the perforated walls generally increase with Mach number and were found to be correlated by the following expression for Strouhal numbers nondimensionalized by the free-stream velocity:

$$h f = S = \frac{K_A}{2 \pi (1 + M_{\infty})};$$

$$K_A = 1, 2, 3, \ldots$$ \hspace{1cm} (6)

Here, h is the axial distance from leading to trailing edge at a particular mode. A typical frequency spectrum of the noise at $M_{\infty} = 0.75$ and $Re/ft = 2.0 \times 10^6$ is given in Fig. 6. Measured frequencies converted to Strouhal numbers are presented in Fig. 7.

These results are seen to correspond closely with McCanless' expression in Ref. 9 that

$$S = 0.15 n^{1.68}$$

$$\frac{1}{(1 + M_{\infty})}$$

$$n = 1, 2, 3, \text{or } 4$$ \hspace{1cm} (7)

McCanless' empirical constant, 0.15 is approximately equal to 1/27; and the Strouhal numbers coincide for acoustic wave numbers $K_A = 1, 3,$ and 6 and the "edgetone stages" $n = 1, 2,$ and 3 defined in Ref. 9. Equation (6), however, explains the intermediate frequencies at $K_A = 2, 4, 5,$ and also 8 as belonging to a harmonically related family of tones emanating from the 60-deg inclined holes.

The dependency upon Mach number for edgetone amplitude and frequency is due to wave speed and inclination angle relative to the free-stream flow. This was verified in supporting experiments on perforated wall acoustic characteristics performed in the 6-in. Acoustic Research Tunnel at AEDC. Typical schlieren photos taken in the 6-in. tunnel are shown in Fig. 8 and revealed the test section to be filled with steep-fronted, reinforced, phase-locked plane waves inclined to the flow at the angle
reflections at the walls and lack of sufficient distance for appreciable wave attenuation. Amplitudes of the waves shown in Fig. 8 were approximately 156 db. A 1/4-in.-diam 30-deg cone-cylinder model was used for illustration in those photos that steep-fronted sound waves can indeed exist in subsonic flow. (There is no bow shock.) These waves exceed the amplitude limits for acoustic theory and are more properly characterized as "finite" waves.

The edgetones did not register in the hot-film TI data taken in AEDC 16T. They are highly pressure-density coupled with negligible fluctuating velocity at high subsonic and transonic speeds. This observation is in agreement with Speck's results(17) which included schlieren photography, microphone, and hot-wire measurements of similar sound waves. These waves are typical of the nonlinear propagation of "finite-amplitude" disturbances in high-speed flow where the local sound speed varies, causing coalescence of the compressions and a flattening of the rarefactions. A different edgetone pattern of resonance occurs in AEDC 47 as compared to AEDC 16T, although the propagation mechanism is the same, involving edgetone wave numbers $K_A = 3$ and 6 at $M_\infty = 0.819$ ($m = 18$ and 36) and varied modes at varied porosity at the supersonic Mach numbers.

NASA/ARC 11 TWT

The results obtained in the NASA Ames Research Center 11-ft Transonic Wind Tunnel, ARC 11 TWT, are presented in Fig. 9. Data are presented at unit Reynolds number per foot levels of 2.0×10^6, 3.0×10^6, and 4.0×10^6. The tunnel total temperatures varied between 55 and 900F as Mach number was increased from 0.4 to 1.2. The unit Reynolds number variation was produced by varying the total pressure. The cone was tested at three different axial positions in the test section, Stations 110, 122, and 150 in. Results are given in Fig. 9 for Stations 110 and 122 in. The results at Station 150 in. were over a smaller Mach number range and are not included. There is a resonance peak at approximately 0.71 Mach number which agrees closely with measurements by Dods and Hanley.(11) Testing at the three axial positions revealed a definite increasing gradient in noise level as the model was moved aft. The noise was found to be dominated by two discrete tones at nominally 2850 and 5300 Hz. A similar procedure of covering the slots with tape to that performed on the AEDC 16T perforated walls revealed these tones to be associated with the slots. The noise gradient with axial position was found to be associated with broadband noise propagated upstream from the diffuser. For the same Mach numbers, lower transition Reynolds numbers are seen in Fig. 9 to accompany higher noise levels at the aft position.

Actual samples of the ARC 11 TWT slotted wall were tested in the 6-in. Acoustic
Research Tunnel at AEDC. The samples provided a single slot in top and bottom walls down the center of the 6-in. test section. Frequencies measured by a microphone on the tunnel side wall were the same as those predominant in the full-scale tunnel as shown in Fig. 10, with the addition of a third harmonic. It was found that these frequencies correspond to a half wave organ pipe mode in the corrugated insert in the slot and depend only upon the corrugation depth, d. The organ pipe frequency is given by the following expression:

$$f = \frac{K_A c}{2(d + c)}; \quad K_A = 1, 2, 3, \ldots$$ \hspace{1cm} (9)$$

where c is 0.125 in. with no plenum suction and is zero with plenum section. Assumed here is that the local speed of sound in the slot is approximately that in the freestream, c, decreasing with increasing Mach number, and that the oscillation in the corrugation is a harmonic standing wave pattern with fluctuating velocity and pressure antinodes 90 deg out of phase. The reflection plane, it is surmised, lies a distance c above the slot with no suction and is drawn down to the slot entrance with suction. Schlieren views in the 6-in.

tunnel revealed the wave pattern emanating from the slots also to be composed of steep-fronted phase-locked plane waves, but at a constant 45-deg inclination angle at varied Mach number in contrast to perforated wall edgetones. This is for all subsonic Mach numbers up to 1.0, which was the maximum capability of the 6-in. tunnel with the slotted top and bottom wall samples installed.

NASA/ARC 14 TWT

The 10-deg cone results obtained in the NASA/Ames 14-ft Transonic Wind Tunnel, ARC 14 TWT, are presented in Fig. 11. The ARC TWT being an atmospheric tunnel, these data were acquired at constant total pressure, p_t, of 2130 psia. However, the total temperature, T_t, varied between 67 and 184°F maximum as Mach number was increased from 0.4 to 1.05. Consequently, the unit Reynolds number per foot increased from approximately 2.6 x 10^6 at $M_\infty = 0.4$ to approximately 4.0 x 10^6 maximum near $M_\infty = 0.8$. The experiment with walls taped was again repeated in this tunnel. A trend of increasing noise level and lower transition Reynolds number at each Mach number is evident (particularly above $M_\infty = 0.7$) comparing results with all of the slots taped, only the side walls taped, and the walls fully open. Two discrete tones, associated with the slots, dominated the noise spectra at Mach numbers between 0.7 and 1.05. The frequencies were 1900 and 3300 Hz.
approximately. Although the 3300-Hz tone has not been explained, the 1900-Hz component fits the fundamental organ pipe frequency for a slot corrugation depth of 3.125 in., which is used in the ARC 14 TWT. The slots have essentially the same geometric configuration as in the 11 TWT, only scaled up in the larger tunnel. There is a second major noise source in the ARC 14 TWT, which is of less influence but is dominant at Mach numbers below 0.5. This is the main compressor which has variable drive speed for higher Mach numbers. Discrete tones in the 135–200-Hz range appear in the noise spectra at Mach numbers between 0.4 and 0.5, decreasing in amplitude as Mach number was increased.

NASA/LRC 8 TPT

The 10-deg cone results in the NASA/Langley Research Center 8-ft Transonic Pressure Tunnel, LRC 8 TPT, are presented in Fig. 12. Data were acquired at constant unit Reynolds numbers of 2.0 x 10⁶ and 3.0 x 10⁶. The total temperature was held near constant at 120°F throughout the test, and the total pressure varied to obtain these unit Reynolds numbers. Lower noise levels at Mach numbers greater than 1.0 in the LRC 8 TPT produce significantly higher transition Reynolds numbers than in either the AEDC or the ARC transonic tunnels. And there is a higher transition Reynolds number at 3.0 x 10⁶ unit Reynolds number than at 2.0 x 10⁶ for Mach numbers greater than 0.8, although the ΔCₚ levels are approximately the same.

Fig. 12 Noise and Reₚ variation in NASA/LRC 8 TPT.

In the Mach number range from 0.25 to approximately 0.5, the 8 TPT has a discrete tone which increases from approximately 3 kHz to approximately 6.5 kHz. This disturbance corresponds to a 26th harmonic of the variable-speed fan, which has 32 rotor blades. There are narrow-band concentrations of disturbances over and above the background at nearly constant frequencies of 4.8 kHz and 10.2 kHz, approximately, at all Mach numbers above 0.7. But the small noise peak to 1.3-percent ΔCₚ is associated with growth of the broad-band noise, maximum in the 200–to 300-Hz range, at Mach numbers near 0.8.

NASA/LRC 16TT

The cone results in the NASA/Langley Research Center 16-ft Transonic Tunnel, LRC 16TT (Fig. 13), are generally similar to those in the LRC 8 TPT as shown in Fig. 12. Like the ARC 14 TWT, this is an atmospheric tunnel where pₑ was constant at 2120 psf. The total temperature, Tₑ, however, varied from 85 to 160°F, giving a unit Reynolds number per foot variation from 1.3 x 10⁶ to 3.9 x 10⁶ as Mach number was varied from 0.3 to 1.3. Transition Reynolds number shows a generally increasing trend with increasing Mach number (or unit Reynolds number), whereas ΔCₚ decreases from 1.95 percent at Mach 0.3 to 0.47 percent at Mach
1.3. There is a narrow-band concentration of noise at approximately 6 kHz at Mach 0.3, increasing to approximately 7 kHz at Mach 0.4 which may be associated with the counter-rotating, two-stage fan. But, there is nothing distinct in the spectra, except general broad-band increase at frequencies near 10 kHz, to explain the small noise peak to 1.22 percent \(\Delta C_P \) at Mach 0.85. This tunnel has the lowest disturbance level of all of the tunnels considered through the transonic Mach number range and accordingly, the highest transonic-range transition Reynolds numbers.

V. Correlation of Results

A general trend of the effect of noise on transition is apparent in these data when transition Reynolds numbers are cross-plotted directly against the \(\Delta C_P \) level. This is only a first-order correlation, ignoring frequency content and directivity. But it is remarkable that a trend should appear even this clearly, considering the broad variation in types of disturbances identified in these six tunnels and the broad variation in test conditions obtained.

The correlation of results in AEDC 4T is given in Fig. 14. Both onset and end of transition Reynolds numbers are shown. The line identified as "predicted onset" is that derived by Benek and High.(16) It is a semiempirical correlation based on the concept put forth by Liepmann and extended by Van Driest and Blumer(19) that

\[
\left(\frac{X}{L} \right)^2 - \left[\frac{2K_1}{Re} + \frac{K_2}{Re} \frac{T_w}{T_\infty} \right]^2 = 0
\]

where \(\Sigma \) is a disturbance function dominated on the first order by \(\Delta C_P \) for the 10-deg cone at transonic speeds, \(T_w \) is the cone wall temperature, \(T_\infty \) is the free-stream static temperature, and \(L \) is the 3-ft length of the cone. The constants have empirically assigned values of \(K_1 = 1.0 \) and \(K_2 = 0.0685 \) and were weighted heavily by the data acquired in AEDC 16T and the Schubauer-Skraramstad result on a flat plate(20) that \(Re \) approaches \(2.85 \times 10^6 \) in a vanishing turbulence level environment. Results by Spangler and Wells(21) indicate that \(Re \) approaches \(4.9 \times 10^6 \) at vanishing disturbance level for a smooth flat plate at a low speed. However, flat plate transition results by DeMets and Casarella(22) in the Naval Ship R & D Center Anechoic Flow Facility at less than 0.1-percent TI are in close agreement with the Schubauer-Skraramstad value of \(2.85 \times 10^6 \) for \(Re \). The premise is made in Eq. (9) that transition Reynolds number approaches a constant value in the absence of free-stream disturbances. This constant value, with the choice of the constants \(K_1 \) and \(K_2 \), was therefore taken to be \(3.0 \times 10^6 \), corresponding to a critical value of disturbance Reynolds number, \(Re_c \), of 2890.

The correlation of results in AEDC 16T is given in Fig. 15. Onset of transition

Fig. 13 Noise and \(Re_t \) variation in NASA/LRC 16 TT.

Fig. 14 Data correlation in AEDC 4T.

onset of transition occurs when a critical ratio is achieved between the Reynolds stresses and the viscous stresses present within the laminar boundary layer. For the calculations, the assumptions have been made of adiabatic wall conditions, zero flow angularity, and that the mean axial pressure gradient on the cone is negligible. The analytical expression for transition onset location given in Ref. 18 is as follows:

\[
\left(\frac{X}{L} \right)^2 - \left[\frac{2K_1}{Re} + \frac{K_2}{Re} \frac{T_w}{T_\infty} \right]^2 = 0
\]
Reynolds number has a more consistent trend than the end of transition Reynolds number, which is apparently affected by the unit Reynolds number in AEDC 16T. This unit Reynolds number disparity may be due in part to an increasing free-stream vorticity level which doubles as unit Reynolds number is increased from 3.0 x 10^6 to 4.0 x 10^6 in this tunnel.

The data correlation in the NASA/ARC 11 TWT, Fig. 16, shows reasonably good agreement with the Eq. (10) prediction; however, there is a definite break in the trend curves with a significant increase in both onset and end of transition Reynolds numbers at approximately 0.6 Mach number. The same sort of break occurs in the NASA/ARC 14 TWT data correlation, Fig. 17, again at approximately 0.6 Mach number. No suitable explanation for this break has been found, but the transition data at transonic speeds appear to lie considerably higher than the prediction. In the ARC 14 TWT, when ΔC_ρ was in the range from 1.5 to 2.0, Re_γ values greater than 3.0 x 10^6 were, in part, the result of experimental error in the minimum pitot profile point caused by the laminar boundary-layer thickness being less than the pitot probe opening height. This would result in a delay in the apparent transition onset point, X_t.

departure from the prediction at lower noise levels. None of the onset of transition Reynolds number data at 3.0 x 10^6 unit Reynolds number were considered to be valid, because of experimental difficulties of maintaining good pitot probe contact with the cone surface at the higher unit Reynolds number during this test. Finally, the correlation of results obtained in the LRC 16TT as shown in Fig. 19 exhibits approximately the same rate of change in transition Reynolds number with increasing noise levels as in most of the other tunnels; but the transition Reynolds numbers are much higher than predicted for the levels of ΔC_ρ measured. A possible explanation is that the noise levels detected by the strain-gage pressure transducers used in the LRC tests were higher than those detected by condenser microphones used in the other tests. Condenser microphones were later adopted as the standard instrumentation for the cone as they were considered to be more reliable in this application.

Aside from the aforementioned observations about possible experimental errors in the data, other factors not accounted for in this analysis are that noise frequency composition was not differentiated, the model vibrations were not considered, the effects of free-stream vorticity level have not been fully evaluated, there could have been appreciable test section flow angularity, and the heat transfer between the cone and the free stream may not have
always been negligible. Furthermore, there
are basic differences in the mode of oper-
ation between the AEDC perforated-wall aux-
iliary suction, which is applied for Mach
numbers of 0.7 or greater, and the NASA
slotted-wall flap suction, when the flaps
are not opened until Mach number is
1.0 or greater. (The NASA/LRC 16TT has
auxiliary suction on the plenum; but this
is likewise not applied until Mach 1.0.)
The possibility that appreciable differ-
ences in the axial pressure gradient on the
cone (buoyancy effects) might be intro-
duced by differences in test section con-
struction warrants further evaluation be-
cause it introduces a second variable to
the experiment which could obscure the de-
sired correlation between noise and transi-
tion. The buoyancy effect from positive
Mach number gradient would be to delay
transition. Full evaluation would entail
a critical assessment of the axial Mach
number distribution in each tunnel for
possible pressure gradient effect on the
cone transition results. Buoyancy correc-
tions to aerodynamic test data would be
applied separately from a correction for
"effective" Reynolds number.

VI. Future Plans

The long-range objective of the study is
to obtain the correlation between transition
Reynolds number and the aerodynamic
disturbances that occur in current-day tran-
sonic wind tunnels. This correlation, to-
gether with the improved definition of
the tunnel flow environment, should afford
some measure of improvement to aerodynamic
testing in transonic tunnels. The tunnel-
to-tunnel correlation is now fairly com-
prehensive for the continuous-flow tunnels.
It is planned that in the future data will
also be acquired in several of the blow-
down-type U.S. industrial manufacturer
transonic tunnels for more extensive tran-
sonic test technique comparison.

Inclusion of the supersonic tunnels and
data at low Mach numbers down to as low as
0.2 has been to overlap this correlation
study with those of others and to place the
transonic test regime in perspective with
other test regimes. The most recent test-
ing was in April 1974, when the NASA/LRC

Transonic Dynamic Tunnel (both in air and
in Freon 125 as the test medium) and the
Naval Ship R & D Center 7- x 10-ft Trans-
sonic Tunnel were added. These two tunnels
both use the coarsely spaced slots similar
in the ONERA 6- x 6-ft transonic tunnel at
Modane, France. One other transonic test
section configuration has also been in-
cluded in previous testing: the 22-percent-
open normal-hole perforated wall used in
the Calspan Corp. 8-ft transonic tunnel and
the ARA, LTD., 9- x 8-ft transonic tunnel
in the United Kingdom.

Correlation of all of the tunnels to
free-flight is planned for the spring of
1975 at Mach numbers from 0.3 to 1.8 at
varied altitudes sufficient to obtain tran-
sition on the cone. The cone will be flown
on a pivoting support boom mounted on the
nose of a USAF RF-4C aircraft operated by
the 4950th test wing based at Wright-
Patterson AFB, Ohio. The flight data will
be acquired in straight-and-level flight at
zero incidence with the pivoting boom com-
pensation for changes in aircraft attitude.

VII. Concluding Remarks

It has been shown that the transition
Reynolds numbers measured on the cone re-
fect the degradation in dynamic flow
quality from aerodynamic noise sources.
The comparison of results in these six
transonic tunnels reveals significant
tunnel-to-tunnel differences at matched
test conditions which can affect Reynolds
number sensitive parameters in aerodynamic
testing. Using transition Reynolds number
as the indicator for dynamic flow quality,
this means that there are corresponding
large differences in the "effective" test
Reynolds numbers.

Focus on the areas for greatest facility
improvement in dynamic flow quality in
these tunnels has been provided. For the
perforated-wall tunnels, this would be to
eliminate the edgetones without compromising
the favorable supersonic wave cancellation
properties. For the finely spaced slotted-
wall tunnels using corrugated inserts in
the slots, this would be to silence the
organ pipe mode. As expected, the data
show that the combined slotted-perforated
features of the slotted walls with corru-
gated inserts yield results falling in
between the purely perforated- and the
purely slotted-wall configurations.

A basis of reference for the wind tunnel-
to-free flight correlation should be pro-
vided by the cone flight test data. Even
if the transition process is never fully
understood, use of transition Reynolds num-
ber data should provide the means for de-
termining relative "effective" Reynolds
numbers in each tunnel upon which to base
corrections of test data,
Finally, new insight has been provided for the fundamental correlation of the effect of high-amplitude free-stream disturbances on transition. These aerodynamic noise disturbances in transonic tunnel reaching 2 to 3 percent of the dynamic pressure have a profound effect on transition, even though their frequencies lie well below those predicted to be unstable by linear stability theory. The explanation is possibly due to their great amplitude, far exceeding the fundamental basis for linear stability theory of predicting the growth of infinitesimally small disturbances.

References

8Karabinus, R. J. and Sanders, B. W., "Measurements of Fluctuating Pressures in S- by 6-Foot Supersonic Wind Tunnel for Mach Number Range of 0.56 to 2.07," TMX-3009, May 1970, NASA.

17Spec, B. M., "Wind Tunnel Experiments on Unsteady Cavity Flow at High Subsonic Speeds," CP No. 4, 1966, AGARD.

